JSCC 2025

TADC-SBM: a Time-Varying, Attributed, Degree-Corrected Stochastic Block Model

Passos, N.A.R.A.; Carlini, E.; Trani, S.

Outline

- Community detection
- Why "neural" community detection?
- Datasets (real-world vs. synthetic)
- Model benchmarking
- Experimental evaluation
- Results/Conclusions

Community detection

A paradigmatic task in **network science** is partitioning a network graph into **node subsets**.

A graph with |V|=38 nodes and |E|=81 edges (62 within-community edges and 19 out-edges).

Community detection

- A paradigmatic task in **network science** is partitioning a network graph into **node subsets**.
- Temporally evolving graphs naturally add another layer of complexity to this task.

Temporal graph snapshots (left) combined in a static graph (right).

Community detection

- A paradigmatic task in **network science** is partitioning a network graph into **node subsets**.
- Temporally evolving graphs naturally add another layer of complexity to this task.
- Multiple domain applications:
 - recommendation systems;
 - route planning and traffic control;
 - fraud and anomaly detection;
 - social network analysis;
 - biochemistry/functional analysis;
 - wildfire prevention;
 - and many others.

Why "neural" community detection?

- Graph representation learning models allow exploiting a graph's (*i*) topology, (*ii*) temporal dynamics, and (*iii*) attribute features to obtain node, edge, or graph-level embeddings.

A function f fits (learns) a graph G and maps nodes to embeddings H, which are then used to obtain a set C of communities (clusters) [1].

- This joint exploration potentially improves on the detectability thresholds [2] of the graph's communities, while the obtained functions (*models*) may be used to predict unseen data.
- Real-world graphs for model evaluation are the norm in AI research → but a flawed one!

^[1] Passos et al., ACM CoNEXT/GNNet Workshop, 2024.

^[2] Nadakuditi & Newman, Phys. Rev. Letters, 2012.

Why not real-world graphs?

- Real-world temporal graph data is scarce, of limited scope, and ground truths are dubious [3].

<u>Scarce</u> → few datasets are available, so the <u>model that best overfits them wins</u>; most datasets are too limited or costly to fully explore the relative performances of GNNs [4].

<u>Limited scope</u> → most available datasets are either <u>citation</u> or <u>communication</u> networks, thus narrowing the assessment of how useful those models are in other domains.

<u>Dubious ground truths</u> → node labels (classes/communities) come from handcrafted, domain-specific categories that may hold little relation w. graph topology/attributes.

- In sum: "there are no planted communities in (temporal) real-world networks" [3].

^[3] Peel et al., Science Advances, 2017.

^[4] Palowitch et al., 28th ACM SIGKDD, 2022.

How to evaluate those models?

- To overcome it, we introduce the **TADC-SBM** generator, a <u>Time-varying</u>, <u>Attributed</u>, Degree--<u>Corrected Stochastic Block Model [4] based on [5, 6] for benchmarks in *controlled* scenarios.</u>

In addition to a block matrix **B**, we employ a transition matrix **T** to control the probability of nodes transitioning communities over time.

- This principled approach allows to compare different temporal community detection models.

^[3] Peel et al., Science Advances, 2017.

^[5] Ghasemian et al., Phys. Rev. X, 2016.

^[6] Tsitsulin et al., ACM Web Conference/GLB Workshop, 2021.

Our experimental setup

- We focused on the "special" case where $\tau := \eta \mathbf{I} + (1 - \eta) \frac{\mathbf{J} - \mathbf{I}}{k - 1}$ for our experiments.

In addition to a block matrix **B**, we employ a transition matrix **T** to control the probability of nodes transitioning communities over time.

- Nodes have a uniform-at-random chance of $1-\eta$ of switching communities per snapshot.
- Additional parameters $\beta = [0,1]$ controls edge sampling and $\gamma = \{0,1\}$ fixes transitions.

Details and metrics

- Using our model, we first generated graphs with *k*=8 **clusters** and *t*=8 **snapshots**.
- We varied only the transition probability $\eta \in \{0, 0.25, 0.5, 0.75, 1\}$ for each graph.
- Node attributes (s = 32-dimensional features) are generated once per node/community.
- Edge distribution follows a power law (α = 2) with expected total of $|E| = d \times |V|$ edges.
- Average node degree approximates $\langle d \rangle = (d + (k 1) d^*)/k$, where d = 20.
- Additional parameters β = [0,1] controls edge sampling and γ = {0, 1} fixes transitions.

Dataset	Model	Accuracy	AMI	ARI
$\mathcal{G}_{\eta=1}$	K-Means	.648 ± .016	$.400 \pm .015$.375 ± .01
	Spectral	$1.000 \pm .000$	$1.000 \pm .000$	$1.000 \pm .00$
	Leiden	$.849 \pm .055$	$.945 \pm .022$	$.848 \pm .04$
	Node2Vec	$.216 \pm .000$	$.066 \pm .000$	$.041 \pm .00$
	Attri2Vec	$.216 \pm .000$	$.066 \pm .000$	$.041 \pm .00$
	DynNode2Vec	$.213 \pm .001$	$.060 \pm .002$	$.037 \pm .00$
	tNodeEmbed	$.216 \pm .000$	$.066 \pm .000$	$.041 \pm .00$
	DAEGC	$1.000 \pm .000$	$1.000 \pm .000$	$1.000 \pm .00$
	DMoN	$.918 \pm .005$	$.813 \pm .011$	$.815 \pm .01$
	TGC	$.687 \pm .004$	$.438 \pm .005$	$.421 \pm .00$
${\cal G}_{\eta=.75}$	K-Means	.648 ± .016	.400 ± .015	.375 ± .01
	Spectral	$.448 \pm .000$	$.152 \pm .000$	$.135 \pm .00$
	Leiden	$.379 \pm .043$	$.132 \pm .016$	$.115 \pm .01$
	Node2Vec	$.195 \pm .001$	$.023 \pm .001$	$.014 \pm .00$
	Attri2Vec	$.199 \pm .002$	$.026 \pm .001$	$.017 \pm .00$
	DynNode2Vec	$.177 \pm .002$	$.012 \pm .002$	$.006 \pm .00$
	tNodeEmbed	$.199 \pm .002$	$.026 \pm .001$	$.017 \pm .00$
	DAEGC	$.628 \pm .050$	$.356 \pm .040$	$.337 \pm .05$
	DMoN	$.251 \pm .019$	$.051 \pm .007$	$.062 \pm .00$
	TGC	$.681 \pm .005$	$.434 \pm .006$	$.415 \pm .00$
$\mathcal{G}_{\eta=.5}$	K-Means	$.648 \pm .016$	$.400 \pm .015$	$.375 \pm .01$
	Spectral	$.210 \pm .000$	$.025 \pm .000$	$.018 \pm .00$
	Leiden	$.204 \pm .017$	$.019 \pm .008$	$.012 \pm .00$
	Node2Vec	$.174 \pm .006$	$.007 \pm .004$	$.004 \pm .00$
	Attri2Vec	$.175 \pm .006$	$.005 \pm .004$	$.003 \pm .00$
	DynNode2Vec	$.176 \pm .003$	$.005 \pm .001$	$.003 \pm .00$
	tNodeEmbed	$.175 \pm .006$	$.005 \pm .004$	$.003 \pm .00$
	DAEGC	$.466 \pm .088$	$.218 \pm .050$	$.180 \pm .05$
	DMoN	$.196 \pm .010$	$.014 \pm .004$	$.026 \pm .00$
	TGC	$.681 \pm .003$	$.432 \pm .005$	$.415 \pm .00$

ADT

Results for graphs with higher stability rates.

Benchmarking results

- Model performance overall severely degraded as $\eta \rightarrow 0$.
- **Exception:** the TGC [7] model displayed good resilience.
- Traditional (*algorithmic*) approaches performed better or as good as SOTA neural models in most scenarios.
- The same in a previous study [1] with real-world graphs.

Limitations and future work

- Extending the model to support mixed memberships.
- Generating dynamic (node and edge-level) features.
- Further evaluate graph embedding and statistical models.

nelsonaloysio.github.io