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Community detection

- A paradigmatic task in network science is partitioning a network graph into node subsets.

7

<\

A graph with [V|=38 nodes and |E|=81 edges (62 within-community edges and 19 out-edges).
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Community detection

- A paradigmatic task in network science is partitioning a network graph into node subsets.

- Temporally evolving graphs naturally add another layer of complexity to this task.

.

Temporal graph snapshots (left) combined in a static graph (right).
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Community detection

- A paradigmatic task in network science is partitioning a network graph into node subsets.
- Temporally evolving graphs naturally add another layer of complexity to this task.

- Multiple domain applications:
- recommendation systems;
- route planning and traffic control,
- fraud and anomaly detection;
- social network analysis;
- biochemistry/functional analysis;
- wildfire prevention;

- and many others.
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Why “neural” community detection?

- Graph representation learning models allow exploiting a graph’s (i) topology, (ii) temporal
dynamics, and (iii) attribute features to obtain node, edge, or graph-level embeddings.

A function f fits (learns) a
graph G and maps nodes

to embeddings H, which are
then used to obtain a set C of
communities (clusters) [1].

- This joint exploration potentially improves on the detectability thresholds [2] of the graph’s
communities, while the obtained functions (models) may be used to predict unseen data.

- Real-world graphs for model evaluation are the norm in Al research -> but a flawed one!

[1] Passos et al., ACM CoNEXT/GNNet Workshop, 2024.
[2] Nadakuditi & Newman, Phys. Rev. Letters, 2012.
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Why not real-world graphs?

- Real-world temporal graph data is scarce, of limited scope, and ground truths are dubious [3].

Scarce - few datasets are available, so the model that best overfits them wins; most
datasets are too limited or costly to fully explore the relative performances of GNNs [4].

Limited scope - most available datasets are either citation or communication networks,
thus narrowing the assessment of how useful those models are in other domains.

Dubious ground truths - node labels (classes/communities) come from handcrafted,
domain-specific categories that may hold little relation w. graph topology/attributes.

- In sum: “there are no planted communities in (temporal) real-world networks” [3].

[3] Peel et al., Science Advances, 2017.
[4] Palowitch et al., 28th ACM SIGKDD, 2022.
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How to evaluate those models?

- To overcome it, we introduce the TADC-SBM generator, a Time-varying, Attributed, Degree-
-Corrected Stochastic Block Model [4] based on [5, 6] for benchmarks in controlled scenarios.
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In addition to a block
matrix B, we employ a
transition matrix 7°

to control the probability
of nodes transitioning
communities over time.

- This principled approach allows to compare different temporal community detection models.

[3] Peel et al., Science Advances, 2017.
[5] Ghasemian et al., Phys. Rev. X, 2016.
[6] Tsitsulin et al., ACM Web Conference/GLB Workshop, 2021.
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Our experimental setup

J-—1
- We focused on the “special” case where 7 :=nI+ (1 —n) P for our experiments.
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In addition to a block
matrix B, we employ a
transition matrix 7°

to control the probability
of nodes transitioning
communities over time.

- Nodes have a uniform-at-random chance of 1 — n of switching communities per snapshot.

- Additional parameters / = [0,1] controls edge sampling and
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Details and metrics

- Using our model, we first generated graphs
with k=8 clusters and t=8 snapshots.

- We varied only the transition probability
n €10, 0.25, 0.5, 0.75, 1} for each graph.

- Node attributes (s = 32-dimensional features)
are generated once per node/community.

- Edge distribution follows a power law (a = 2)
with expected total of |E| = dx|V| edges.

- Average node degree approximates
(d) = (d + (k - 1) d*)/k, where d = 20.

- Additional parameters / = [0,1] controls
edge sampling and

TADC-SBM: a Time-Varying, Attributed, Degree-Corrected Stochastic Block Model

Dataset Model Accuracy AMI ARI
K-Means 648 £ 016  .400 + .015  .375 + .018
Spectral 1.000 + .000 1.000 + .000 1.000 + .000
Leiden 849 + .055  .945 + .022  .848 + .048
G Node2Vec 216 £.000  .066 +.000  .041 % .000
n=1 Attri2Vec 216 +£.000  .066 +.000  .041 +.000
DynNode2Vec  .213 + .001 060 £.002  .037 +.001
tNodeEmbed 216 + .000  .066 + .000  .041 + .000
DAEGC 1.000 + .000 1.000 + .000 1.000 + .000
DMoN 918 + .005 813 = 011 815 + .011
TGC 687 +.004 438 £.005  .421 +.005
K-Means 648 £ .016 400 + .015  .375 + .018
Spectral 448 £ 000  .152+.000  .135 + .000
Leiden 379 £.043 132+ .016  .115 £ .017
G Node2Vec .195 + .001 023 + .001 014 + .000
=470 Attri2Vec 199 +£.002  .026 + .001 .017 £ .000
DynNode2Vec ~ .177 +.002  .012 +.002  .006 + .001
tNodeEmbed ~ .199 + .002  .026 + .001 017 + .000
DAEGC 628 +£.050 356 +.040  .337 +.055
DMoN 251 +.019  .051+.007  .062 +.007
TGC 681 +.005 434 +.006 415 + .007
K-Means 648 £ .016 400 + .015  .375 + .018
Spectral 210 +£.000  .025+.000  .018 +.000
Leiden 204 £ .017  .019 +.008  .012 +.005
G Node2Vec 174 £ .006  .007 +.004  .004 + .002
n=:5 Attri2Vec 175 +£.006  .005 +.004  .003 +.002
DynNode2Vec ~ .176 +.003  .005 + .001 .003 % .000
tNodeEmbed  .175 + .006  .005 +.004  .003 + .002
DAEGC 466 + 088 218 £ .050  .180 + .058
DMoN 196 £.010  .014 +.004  .026 + .003
TGC 681 +.003 432 +.005 415 +.005

Results for graphs with higher stability rates.
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Benchmarking results

- Model performance overall severely degraded as # > 0.
- Exception: the TGC [7] model displayed good resilience.

- Traditional (algorithmic) approaches performed better
or as good as SOTA neural models in most scenarios.

- The same in a previous study [1] with real-world graphs.

Limitations and future work

- Extending the model to support mixed memberships.

- Generating dynamic (node and edge-level) features.

- Further evaluate graph embedding and statistical models.

[1] Passos et al., ACM CoNEXT/GNNet Workshop, 2024. [7] Liu et al., ICLR, 2024.
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