
TADC-SBM: a Time-varying, Attributed,
Degree-Corrected Stochastic Block Model
Nelson A. R. A. Passos

University of Pisa
National Research Council

Pisa, Italy
0000-0003-1869-2976

Emanuele Carlini
National Research Council

Pisa, Italy
0000-0003-3643-5404

Salvatore Trani
National Research Council

Pisa, Italy
0000-0001-6541-9409

Abstract—We present a synthetic dataset generator that pro-
duces temporal graphs with varying community structures,
attribute features, and temporal dynamics, allowing for the
evaluation of node clustering methods in a systematic manner.
Temporal graphs offer a robust framework for modeling dynamic
systems, with far-reaching applications in various domains where
the analysis of evolving relationships between entities over time is
required, such as transportation networks and recommendation
systems. However, detecting communities in such graphs poses
significant challenges, as the underlying community structure
is subject to change over time and the presence of additional
node or edge attributes introduces further complexity. Recent
advances in graph neural networks have shown promise for
”neural” community detection, but their expressiveness and
generalization capabilities in attributed temporal graphs remain
unclear, largely due to the scarcity of suitable real-world datasets
for evaluation. In an experimental evaluation using TADC-SBM,
we observe that novel approaches for node clustering can display
good performance in scenarios with low community stability,
but do not consistently outperform most baselines, highlighting
potential research opportunities and underscoring the need for
more generalizable models and robust benchmarks and datasets.

Index Terms—Temporal Graphs, Community Detection,
Stochastic Block Modeling, Graph Representation Learning.

NOMENCLATURE

G,G: Graph (static/temporal).
V,V: Nodes set.
E, E : Edges set.
XV ,XV : Node features matrix.
XE ,XE : Edge features matrix.
A: Adjacency matrix.
B: Block matrix.
H: Embedding matrix.
τ : Transition matrix.
z: Node membership vector.
δ: Kronecker delta.

⊕: Perm.-invariant operator.
ϕ: Readout function.
ψ: Aggregation function.
θ: Node degree distribution.
α: Power law exponent.
β: Edge sampling probability.
η: Community stability rate.
γ: Fixed transition probabilities.
σ: Inter-cluster feature distance.
σc: Intra-cluster feature distance.
Θ: Feature covariance matrix.

I. INTRODUCTION

Communities in networks are often defined as mesoscale
structures of comparatively similar entities, according to some
ad hoc criterion. Detecting them is a fundamental problem
in Network Science, with multiple techniques proposed to
tackle it and far-reaching applications for varied tasks, such
as analyzing social patterns, discovering functional biological
modules, and forecasting traffic [5]. In temporal and attributed
graphs, the problem of community detection entails additional

challenges, along with research opportunities — yet it has
accrued considerably less attention in the literature so far [19].

More recently, advances in the field of Artificial Intelligence
have led to the proposal of new machine learning models for
non-Euclidean data, such as manifolds and graphs [27]. In the
latter case, nodes, edges, or (sub)graphs are mapped into a
real-dimensional space — elements are represented as vectors
(embeddings), while their relative proximity reflects some
notion of similarity among them — thus enabling downstream
tasks such as node clustering, link prediction, and graph
classification. Their strength mainly lies in jointly leveraging a
graph’s topology, attributes, and temporal dynamics altogether,
aspects often present in tandem in real-world networks [19].

Despite their state-of-the-art performance in various ap-
plications, the effectiveness of these models for community
detection in temporal graphs remains largely unexplored [13].
In previous work, machine learning models for graphs were
rather shown to underperform when compared to more estab-
lished algorithms [1]. Moreover, real-world datasets used in
their evaluation are often static, unattributed, or lack verifiable
ground truths, therefore hindering a thorough assessment of
their performance under controlled experimental settings [22].

In this work, we focus on the problem of benchmarking
node clustering models for graphs where node features are
present, edges are associated with a timestamp, and their
structure evolves over time. Our contribution is threefold:

• We present a principled approach for generating attributed
temporal graphs with community ground truths, building
on previous work on stochastic block modeling [6], [25];

• We employ the TADC-SBM model here presented to gen-
erate synthetic graphs and evaluate how several existing
approaches for community detection perform on them;

• We discuss our experimental results, offer possible in-
sights, and release the code1 used in our experiments to
foster reproducibility and further research on the topic.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on relevant topics. Section III for-
malizes the research problem and presents our methodology.
Section IV discusses experimental results. Lastly, Section V
concludes the paper and outlines future research directions.

1Available at the repository: https://github.com/nelsonaloysio/tadc-sbm.

II. RELATED WORK

This section briefly outlines related work in community
detection, learning and clustering temporal graphs, synthetic
graph generation, and benchmarking graph learning models.

Community detection: Groups of similar nodes in a
network — considering their density of connections, shared
attributes, and/or other criteria — are often referred to as
communities, clusters or modules [19]. Commonly used
methods for their detection include spectral techniques [31];
optimization algorithms that maximize an objective function,
e.g., modularity [29]; statistical inference, which estimates
the likelihood of the data through probabilistic generative
processes [24]; label and belief propagation [21]; and graph
representation learning models [9]. In temporal graphs, where
nodes, edges, and their associated attributes may change,
the task becomes significantly more complex (see Figure 1),
though models adapted for this context have shown improved
performance and detectability thresholds [6].

Learning and clustering temporal graphs: The goal of
graph representation learning models is to find a function that
efficiently maps complex, high-dimensional graph elements
into dense, d-dimensional vectors, i.e., f : G → H ∈ Rd

[9]. Since the introduction of SkipGram-based models
[16], which encode node similarity based on random walk
sampling, numerous graph representation learning models
have been proposed, evolving from ”shallow” to ”deep”
architectures able to capture more complex patterns. Among
the latter, Graph Neural Networks (GNNs) are a class of
state-of-the-art deep learning models that can obtain node
representations by recursively aggregating their and their
neighbors’ features, usually employing a message-passing
scheme [7], i.e., hi = ϕ

(
xi,⊕j∈Ni

ψ(xi, xj , xe)
)
, where ψ

and ϕ are differentiable functions, ⊕ is a permutation invariant
aggregation, and xi, xj , and xe are a node’s, its neighbors’,
and their edges’ features, respectively. For temporal graph
learning, GNNs are often used to learn representations from
a sequence of graph snapshots or edge-level events, relying
on recurrent architectures [26], attention mechanisms [34],
temporal decay [12],and others. However, despite the recent
advances in the field and its potential relevance in many
domains, the task of neural community detection in temporal
graphs remains a relatively less-studied area of research [13].

Synthetic graph generation: Among generative graph
approaches, Stochastic Block Models (SBMs) are widely
used to produce synthetic graphs with community ground
truths. The simplest model receives two parameters as input:
a block matrix B = Brs, that describes the edge probability
between nodes in communities r and s, and a vector z,
where each element is the node’s community assignment,
drawn from a prior distribution q. The likelihood of the data
is given by P (A|z) =

∏
ij P (Aij |zi, zj) and adjacencies

by a binomial distribution, i.e., Aij ∼ Bernoulli(Bzizj). By

G1

G2

G3

−→

G

Fig. 1. Temporal graph snapshots (left) combined (right) to form a static
graph, with communities obtained by modularity optimization [29]. Node
colors represent their memberships and dashed lines indicate time-adjacent
node copies. Notice how the orange and green communities are merged in G,
while the highlighted node (in red) transitions communities on each snapshot.

employing optimization strategies such as Markov Chain
Monte Carlo sampling, Expectation-Maximization, simulated
annealing, or other variational inference methods, SBMs
may also be employed for community detection, ultimately
allowing for the faithful reconstruction of a graph by fitting
the model that maximizes its likelihood and most accurately
describes the observed data. Recent advances in the field
have led to the introduction of more complex models that
extend the original SBM framework, by parameterizing
the node degree distribution [10]; accounting for nested
(hierarchical) community structures [24] and contextual
(node/edge) attributes [3]; or temporal dynamics [35].

Benchmarking models: Synthetic graphs generators are
instrumental in evaluating and comparing models for commu-
nity detection [11], e.g., based on stochastic blockmodeling
[25]. Its capacity to produce datasets with varied community
structures, both assortative and disassortative, and of varying
degree distributions, presents a suitable choice to benchmark
models for node clustering in static and temporal graphs within
controlled experimental settings, in both transductive and
inductive learning settings. In contrast, real-world temporal
graph datasets for node classification are usually (i) narrowly
themed, based on data from citation, political, or social
communication networks; (ii) have static node memberships,
unchanged over time; and/or (iii) ground truths that refer to
predefined, domain-specific, or handcrafted categories, which
do not necessarily correspond to observed activity patterns, nor
nodes’ attribute features [22]. These aspects severely limit their
usefulness for model benchmarking purposes, highlighting the
need for more suitable datasets and synthetic graph generators.

III. METHODOLOGY

In this work, we deal with the following research questions:
(i) how to evaluate graph learning models in attributed tem-
poral graphs; and (ii) how well they perform in the task of
community detection compared to other established methods.

A temporal graph [13] is usually represented either as a
sequence of snapshots, GS := {G1, . . . , Gt | t ∈ N}, where

Gt := {V,E,XV , XE} is a static graph at time t, and V ,
E, XV , and XE are nodes, edges, and their features; or edge-
level events, GE := {∀e ∈ E : {u, v, t, δ, xu, xv, xe} | t ∈ R+},
where E are edges (interactions), u and v are nodes, δ ∈ {0, 1}
represents an edge addition, removal, or interaction length, and
xu, xv , and xe are (optional) node- and edge-level features2.

In our context, a model (algorithm) is used to learn (employ)
a function f : G → C, which maps nodes in a temporal
graph G to a set of k clusters C = {C1, . . . , Ck}. In the
graph representation learning paradigm, two functions may
be employed: first to encode nodes into a real d−dimensional
space, i.e., g : G → H ∈ Rd, and then obtain their membership
assignments from their latent representations, i.e., h : H → C.

Lastly, the model’s performance is evaluated based on the
predicted clusters and the ground truths. Here, we focus on
attributed temporal graphs with a fixed number of clusters
and static attribute features, and do not consider overlapping
(mixed-membership) communities, while the framework pre-
sented is flexible enough to support future extensions.

A. Model description

To enable the joint generation of temporal graphs with
community ground truths and node- and edge-level features,
we base ourselves on previously introduced generative models
for degree-corrected temporal and attributed graphs [6], [25].

Graph generation: Initial node memberships z =
{z0, z1, ..., zn} are drawn from a prior distribution q, for n
nodes and k clusters. Edges are generated from a power law
distribution with exponent α > 0 that controls the expected
node degree distribution, with minimum and maximum de-
grees bounded by arbitrarily defined values dmin and dmax.

A square matrix B is used to generate a graph G1, in which
each element Brs defines the expected number of edges
between clusters r and s. The adjacency matrix is sampled
from a binomial distribution, with the probability of an edge
between nodes u and v given by Bzuzv . Therefore, both the
expected degree dv of each node v and their expected number
of connections to other clusters d⋆v ≤ dv are considered
during this process. At the end of this stage, the spectral
detectability of each community c in the graph is given by
dc − d⋆c [18], and the power law’s extremity by dmax − dmin.

Temporal dynamics: This process is repeated for a prede-
fined number of snapshots T ≥ 1. A k × k transition matrix
τ defines the probability τrs of a node changing communities
from r to s at each snapshot t > 1, as depicted in Figure 2.

Two additional hyperparameters allow further control of this
process. The first, γ ∈ {0, 1}, determines if node transition
probabilities are either fixed or dynamic, i.e., based on their
initial or current memberships, respectively — nodes have a
fixed chance η of remaining in or returning to their original
community if γ = 1, ensuring consistent transition probabil-
ities over time; while γ = 0 may result in a harder task if

2Snapshot-based and event-based temporal graphs are also referred to in
the literature as discrete-time and continuous-time temporal graphs [13].

0 1 0 1B τ G

G1

G2

Fig. 2. Generation of a temporal graph G with t = 2 snapshots. The block
matrix B is used to generate the adjacency matrix of each snapshot Gt ∈ G,
while the transition matrix τ controls nodes changing communities over time.

η > 1/k, especially as the number of snapshots T increase.
The second, β ∈ [0, 1], determines the probability of observing
the edges of each snapshot, with β = 1 preserving all sampled
edges — when β < 1, nodes with lower degrees have a higher
chance to vanish and resurge over time, as the graph becomes
sparser and isolates are filtered out — therefore introducing
additional stochasticity to the temporal dynamics of the graph.

During this process, edges are generated independently
for each graph Gt ∈ G. At this point, the detectability of
dynamic communities depends on the rate and strength of
their change [6]: if the probability of nodes remaining in
their community is given by η and probability of them
transitioning to another random community by 1 − η, the
threshold then interpolates from the static value when
η = 1 to zero when η = 0. In the event of the latter, the
predictive accuracy of a model is expected to approximate that
of a random guess, i.e., 1/k, where k is the number of clusters.

Feature attribution: For a number of clusters k̂, zero-
mean centroids are drawn from an si-multivariate normal
distribution with covariance matrix Θi = σ2

i · I, where σ2
i

is the variance of the i-th cluster and I is the identity matrix
[25]. Node features XV ∈ G are drawn from an s-multivariate
normal distribution with mean xv and covariance Θ = σ2 · I,
with the ratio σ2

i /σ
2 controlling the expected intra-community

and inter-community centroid distances, i.e., the within and
between sum of squares of the feature clusters. Features may
be generated with hierarchical (nested) group structures [24],
and the number of clusters in the feature space may differ
from the number of communities in the graph, i.e., k̂ ̸= k.

Edge features XE ∈ G may be optionally generated consid-
ering node communities. Within-community edge features are
sampled from a zero-mean, unit-covariance, se-multivariate
normal distribution, while between-community edge features
are sampled with unit covariance and mean vector XE =
{∀e ∈ E : xe}. Larger values of xe increase the intra-
community and inter-community edge features distances, and
decrease the difficulty of recovering node ground truths [25].

Note that, in contrast with the dynamic community struc-
ture, node-level features are generated once at the beginning
of the process and remain unchanged over time. This approach
was found suitable for node clustering benchmarks, allowing
models to exploit them to retrieve the ground truths, although it
may be extended in future work to allow for evolving features.

TABLE I
Evaluated models, divided into three groups: general algorithms, shallow

graph representation learning models, and GNN models for node clustering.
Input: XV features, G, GS , GE graphs (static, snapshot- or event-based).

Model Input Topology Features Temporal

K-Means XV ✓
Spectral Clustering G ✓
Leiden G ✓

Node2Vec G ✓
Attri2Vec G ✓ ✓
DynNode2Vec GS ✓ ✓
tNodeEmbed GS ✓ ✓

DAEGC G ✓ ✓
DMoN G ✓ ✓
TGC GE ✓ ✓ ✓

B. Evaluated models

We compared several approaches that take a graph’s topol-
ogy, temporal dynamics, and/or attribute features as input, as
summarized in Table I. Our selection includes both established
algorithms for community detection and more recent graph
learning models for node clustering, and prioritizes solutions
implemented in open source frameworks [2], [4], [23].

K-Means [14] is an algorithm that partitions elements
into clusters based on their positions in the feature space.
Spectral Clustering [20] is a clustering algorithm based on
eigendecomposition of the graph Laplacian. Leiden [29] is
an optimization algorithm based on the graph’s topology,
here employing modularity as a quality function. Node2Vec
[8] is a graph representation learning model that maps node
similarities based on their co-occurrences in random walks.
Attri2Vec [36] is an extension of Node2Vec that includes
node attributes to encode their similarity. DynNode2Vec [15]
extends Node2Vec to temporal graphs by sampling a se-
quence of graph snapshots, with initial weights defined by the
previously learned embeddings. tNodeEmbed [28] employs
matrix approximations on consecutive snapshots to align node
embeddings. DAEGC [33] is an attentional graph autoencoder
that minimizes a joint reconstruction and clustering loss to
learn node embeddings based on their neighborhoods. DMoN
[30] is an end-to-end GNN that optimizes modularity with a
collapse regularization term to avoid trivial solutions. TGC
[12] is a graph autoencoder that employs a temporal decay-
based (Hawkes) function to learn embeddings — which, at the
moment of writing, is the only GNN-based model designed for
temporal node clustering proposed since a recent survey [13].

C. Evaluation metrics

We assess the performance of the models based on three
key metrics commonly employed in the literature [32]:

• Accuracy: we use the Kuhn-Munkres algorithm to solve
label assignments and compute correctly predicted labels;

• AMI: Adjusted Mutual Information, based on the mutual
information between true and predicted clusters.

• ARI: Adjusted Rand Index, based on the number of pairs
of elements assigned to the same or distinct groups.

IV. EXPERIMENTAL RESULTS

We employ the TADC-SBM model to generate a temporal
undirected graph with T = 8 snapshots, n = 1024 nodes and
k = 8 clusters, with similar parameterization to [6], [25].

Initial node memberships are drawn uniformly-at-random,
i.e., q = 1/k. The degree vector z is obtained by setting aver-
age degree d = 20, average inter-community degree d⋆ = 2,
and power law parameters α = 2, dmin = 2, dmax = 20. The
expected number of edges per snapshot is |E| = d× n/2 and
the expected average degree is ⟨d⟩ = (d + (k − 1) d⋆)/k.
The block matrix B is defined as Brs = d/n if r = s
and d⋆/n otherwise, i.e., p/q = (d − d⋆)/d⋆. Node features
XV = {x1, x2, . . . , xn} are generated from a multivariate
normal distribution with s = 32 dimensions, k̂ = k clusters,
σ2 = 1 intra-cluster variance, and σ2

c = 6 cluster variance.
We define the transition matrix by fixing the probability of

a node remaining in its community to η, and changing its
community uniformly-at-random with probability 1− η, i.e.,

τ := η I+ (1− η)
J− I

k − 1
,

where I is the identity matrix and J is a matrix of ones3. We
vary the probability of nodes remaining in their community
η ∈ {0, 0.25, 0.5, 0.75, 1} and keep node transition and edge
sampling hyperparameters both fixed at γ = 0 and β = 1,
meaning that node transition probabilities are based on their
current memberships and all sampled edges are observed. The
temporal graph Gη=1 therefore maintains the same community
structure in all snapshots, while Gη=0 displays completely
random mesoscale temporal dynamics, with only node-level
features providing information on the ground truths. Lastly,
snapshots were reversed, G = {Gt, . . . , G1}, to ensure that the
last snapshot contained the node ground truths for prediction.

A. Discussion

This section summarizes our experimental results for the
selected models in a transductive learning setting, where the
whole graph was used for training and testing. The Leiden
algorithm optimized modularity Q, with initial random node
label assignments C = {∀v ∈ V : c(v) ≤ k}. For SkipGram-
based models, return and in-out parameters were set to 1, walk
length to 80, and number of walks per node and window size
to 10. Node embedding dimensionality was set to 128, and
we performed hyperparameter tuning on the dropout rate and
collapse regularization term for DMoN. Remaining hyperpa-
rameters were set to the values described in the papers, and we
include the data and code in our repository for reproducibility.

Table II shows the performance of the evaluated models
across all datasets. We report the mean and standard deviation
of the metrics on the best epochs over 5 runs. K-Means is used
as a baseline for the separability of communities considering
node-level features, while Spectral Clustering serves as a
baseline for their detectability regarding the graph’s topology.

3Note that adding (1−η)/k to the value of η yields the same probabilities
as in [6], where uniform-at-random transition probabilities include the node’s
current community, i.e., τrs = η+(η/k) if r = s and (1− η)/k otherwise.

A
cc

ur
ac

y
1.0

0.8

0.6

0.4

0.2

Gη=1 Gη=.75 Gη=.5 Gη=.25 Gη=0

K-Means
Spectral
Leiden
Node2Vec
Attri2Vec
DynNode2Vec
tNodeEmbed
DAEGC
DMoN
TGC

Fig. 3. Model accuracy averaged over 5 runs on synthetic graphs.

In general, model performance was highly dependent on
the community stability level of the graphs, rapidly decreasing
with the probability η of nodes remaining in their communities
— as the task increased in difficulty due to the number of
snapshots (T = 8) and dynamic node transition probabilities
(γ = 0). In contrast, employing spectral decomposition suf-
ficed to correctly retrieve the ground truths only in the graph
generated with static communities, as evidenced in Fig. 3.

Spectral clustering and DAEGC were the best-performing
models on Gη=1, followed by DMoN and Leiden optimizing
modularity (Q = 0.43). Performance employing spectral
clustering degraded much faster than DAEGC as η approached
zero, which can be attributed to the former obtaining clusters
from the eigenvectors of the graph Laplacian, while the latter
leverages both the graph’s topology and node-level features.

DMoN, which optimizes spectral modularity and also con-
siders node-level features, was the second best-performing
model on average on Gη=1. As most other models, it did not
maintain performance on graphs generated with η = 0.75,
figuring on par with other methods in graphs with η ≤ 0.5.

TGC, the only GNN-based model designed for node-level
clustering in temporal graphs, was the only model that did
not show performance degradation on η < 1 graphs. This
result may be attributed to the model’s design and the fact
that the last snapshot contained the community ground truths,
benefiting the temporal decay-based loss it optimizes. How-
ever, it was outperformed by Spectral, Leiden, and GNN-
based methods on Gη=1, and closely followed by K-Means
in the other graphs. Further experimentation, including a
suitable hyperparameter tuning strategy and examining its loss
landscape, is warranted to properly assess its expressiveness.

Conversely, all evaluated random walk-based models, such
as Node2Vec, performed poorly across datasets, in spite of
leveraging the graph’s topology in conjunction with node-level
features (Attri2Vec) or temporal dynamics (DynNode2Vec,
tNodeEmbed). As communities were not well-separated over
time, it may be that the underlying community structure was
not captured during sampling, although a different parameteri-
zation or extending the models to account for both the graph’s
temporal dynamics and node features could yield better results.

TABLE II
Model performance in a transductive setting. We mark the best results for
each dataset in bold and italic. Generated graphs have varying community
transition probabilities, given by 1− η, for every node in each snapshot.

Dataset Model Accuracy AMI ARI

Gη=1

K-Means .648 ± .016 .400 ± .015 .375 ± .018
Spectral 1.000 ± .000 1.000 ± .000 1.000 ± .000
Leiden .849 ± .055 .945 ± .022 .848 ± .048

Node2Vec .216 ± .000 .066 ± .000 .041 ± .000
Attri2Vec .216 ± .000 .066 ± .000 .041 ± .000

DynNode2Vec .213 ± .001 .060 ± .002 .037 ± .001
tNodeEmbed .216 ± .000 .066 ± .000 .041 ± .000

DAEGC 1.000 ± .000 1.000 ± .000 1.000 ± .000
DMoN .918 ± .005 .813 ± .011 .815 ± .011
TGC .687 ± .004 .438 ± .005 .421 ± .005

Gη=.75

K-Means .648 ± .016 .400 ± .015 .375 ± .018
Spectral .448 ± .000 .152 ± .000 .135 ± .000
Leiden .379 ± .043 .132 ± .016 .115 ± .017

Node2Vec .195 ± .001 .023 ± .001 .014 ± .000
Attri2Vec .199 ± .002 .026 ± .001 .017 ± .000

DynNode2Vec .177 ± .002 .012 ± .002 .006 ± .001
tNodeEmbed .199 ± .002 .026 ± .001 .017 ± .000

DAEGC .628 ± .050 .356 ± .040 .337 ± .055
DMoN .251 ± .019 .051 ± .007 .062 ± .007
TGC .681 ± .005 .434 ± .006 .415 ± .007

Gη=.5

K-Means .648 ± .016 .400 ± .015 .375 ± .018
Spectral .210 ± .000 .025 ± .000 .018 ± .000
Leiden .204 ± .017 .019 ± .008 .012 ± .005

Node2Vec .174 ± .006 .007 ± .004 .004 ± .002
Attri2Vec .175 ± .006 .005 ± .004 .003 ± .002

DynNode2Vec .176 ± .003 .005 ± .001 .003 ± .000
tNodeEmbed .175 ± .006 .005 ± .004 .003 ± .002

DAEGC .466 ± .088 .218 ± .050 .180 ± .058
DMoN .196 ± .010 .014 ± .004 .026 ± .003
TGC .681 ± .003 .432 ± .005 .415 ± .005

Gη=.25

K-Means .648 ± .016 .400 ± .015 .375 ± .018
Spectral .181 ± .000 .006 ± .000 .004 ± .000
Leiden .180 ± .006 .010 ± .002 .006 ± .002

Node2Vec .170 ± .004 .002 ± .001 .001 ± .001
Attri2Vec .168 ± .005 .002 ± .002 .001 ± .001

DynNode2Vec .167 ± .001 .006 ± .001 .003 ± .000
tNodeEmbed .168 ± .005 .002 ± .002 .001 ± .001

DAEGC .375 ± .054 .151 ± .017 .110 ± .025
DMoN .182 ± .011 .007 ± .004 .018 ± .004
TGC .680 ± .003 .431 ± .004 .414 ± .004

Gη=0

K-Means .648 ± .016 .400 ± .015 .375 ± .018
Spectral .183 ± .000 .017 ± .000 .010 ± .000
Leiden .181 ± .006 .008 ± .004 .005 ± .002

Node2Vec .173 ± .003 .004 ± .001 .002 ± .001
Attri2Vec .171 ± .006 .004 ± .004 .002 ± .002

DynNode2Vec .165 ± .001 .005 ± .000 .002 ± .000
tNodeEmbed .171 ± .006 .004 ± .004 .002 ± .002

DAEGC .390 ± .086 .173 ± .054 .128 ± .060
DMoN .179 ± .008 .004 ± .002 .016 ± .002
TGC .682 ± .006 .433 ± .009 .416 ± .009

In summary, as η approached zero, most models performed
only slightly better than random guessing in the task of
community detection, with ground truths set to the last snap-
shot. Future benchmarking efforts may investigate if model
performance degrade as fast as observed for temporal graphs
generated with different parameter values. Lastly, we highlight
that in case of the Leiden algorithm, optimizing a temporal,
e.g., multislice modularity [17] could result in better partition-
ing, as well as other techniques, such as asymptotically optimal
spectral decomposition for dynamic community detection [6].

V. CONCLUSION

In this work, we have presented a framework for generating
synthetic attributed temporal graphs with community ground
truths, and compared distinct existing solutions for node-level
clustering in this context. Most evaluated solutions displayed
decreasing performance as community-level changes were
introduced to the graph in a topological level, while node
attribute features remained static. In particular, the temporal
GNN-based model evaluated did not show performance degra-
dation despite the mesoscale perturbations introduced by the
temporal dynamics, and benchmarking it in other simulated
scenarios, such as varying the number of snapshots, node
features, and communities, may allow to further assess its
expressiveness in different scenarios in a systematic way.

We note that our experiment considered only undirected
graphs, with a relatively small number of nodes and clusters,
exclusively in a transductive learning setting. As model perfor-
mance may vary significantly depending on the dataset and the
choice of hyperparameters, the same experimental setup may
likely yield distinct results in an inductive learning setting,
possibly allowing to evaluate how well neural community
detection models generalize. Finally, the TADC-SBM model
may be extended to generate directed, weighted, and multi-
graphs, as well as dynamic node features and overlapping
(mixed-membership) communities, accounting for a wider
range of simulated scenarios, which we leave for future work.

ACKNOWLEDGMENTS

We thank the members of the Inverse Complexity Lab at the
Interdisciplinary Transformation University Austria, Linz, and
the Department of Network and Data Science at the Central
European University, Vienna, especially Prof. Tiago Peixoto,
for their guidance and support in the initial phase of this study,
during a fruitful visiting research period in the spring of 2024.

REFERENCES

[1] Nelson A. R. A. Passos, Emanuele Carlini, and Salvatore Trani. Deep
community detection in attributed temporal graphs: Experimental evalu-
ation of current approaches. In Proceedings of the 3rd GNNet Workshop
on Graph Neural Networking Workshop, GNNet ’24, pages 1–6, New
York, NY, USA, 2024. Association for Computing Machinery.

[2] CSIRO’s Data61. Stellargraph machine learning library, 2018.
[3] Yash Deshpande, Andrea Montanari, Elchanan Mossel, and Subhabrata

Sen. Contextual stochastic block models, 2018.
[4] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with

PyTorch Geometric. In ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

[5] Santo Fortunato. Community detection in graphs. Physics Reports,
486(3-5):75–174, 2010.

[6] Amir Ghasemian, Pan Zhang, Aaron Clauset, Cristopher Moore, and
Leto Peel. Detectability thresholds and optimal algorithms for commu-
nity structure in dynamic networks. Phys.Rev.X, 6(3), 2016.

[7] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl. Neural message passing for quantum chemistry.
In 34th International Conference on Machine Learning - Volume 70,
ICML’17, pages 1263–1272. JMLR.org, 2017.

[8] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In 22nd ACM SIGKDD. ACM, 2016.

[9] William L. Hamilton. Graph Representation Learning, volume 14.
Morgan and Claypool, 2017.

[10] Brian Karrer and M. E. J. Newman. Stochastic blockmodels and
community structure in networks. Phys.Rev.E, 83(1), 2011.

[11] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Bench-
mark graphs for testing community detection algorithms. Physical
Review E, 78(4), October 2008.

[12] Meng Liu, Yue Liu, Ke Liang, Wenxuan Tu, Siwei Wang, Sihang Zhou,
and Xinwang Liu. Deep temporal graph clustering. In The 12th
International Conference on Learning Representations, 2024.

[13] Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini,
Bruno Lepri, Pietro Lio, Franco Scarselli, and Andrea Passerini. Graph
neural networks for temporal graphs: State of the art, open challenges,
and opportunities. Transactions on Machine Learning Research, 2023.

[14] JB MacQueen. Some methods for classification and analysis of multi-
variate observations, proceedings of 5-th berkeley symposium on math-
ematical statistics and probability. Berkeley, University of California
Press, 1:281–297, 1967.

[15] Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. dynnode2vec:
Scalable dynamic network embedding. In 2018 IEEE International
Conference on Big Data (Big Data). IEEE, 2018.

[16] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space, 2013.

[17] Peter J. Mucha, Thomas Richardson, Kevin Macon, Mason A. Porter,
and Jukka-Pekka Onnela. Community structure in time-dependent,
multiscale, and multiplex networks. Science, 328(5980):876–878, 2010.

[18] Raj Rao Nadakuditi and M. E. J. Newman. Graph spectra and the
detectability of community structure in networks. Physical Review
Letters, 108(18), 2012.

[19] Mark Newman. Networks. Oxford University Press, 2 edition, 2018.
[20] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering:

Analysis and an algorithm. In T. Dietterich, S. Becker, and Z. Ghahra-
mani, editors, Advances in Neural Information Processing Systems,
volume 14. MIT Press, 2001.

[21] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufman Publishers, 1988.

[22] Leto Peel, Daniel B. Larremore, and Aaron Clauset. The ground truth
about metadata and community detection in networks. Science Advances,
3(5), 2017.

[23] Tiago P. Peixoto. The graph-tool python library. figshare, 2014.
[24] Tiago P. Peixoto. Hierarchical block structures and high-resolution

model selection in large networks. Physical Review X, 4(1), 2014.
[25] Anton Tsitsulin; Benedek A Rozemberczki; John Palowitch; Bryan

Perozzi. Synthetic graph generation to benchmark graph learning. In
Workshop on Graph Learning Benchmarks, 2021.

[26] Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Gated graph
recurrent neural networks. IEEE Transactions on Signal Processing,
68:6303–6318, 2020.

[27] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Mon-
fardini. The graph neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2009.

[28] Uriel Singer, Ido Guy, and Kira Radinsky. Node embedding over tempo-
ral graphs. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, IJCAI’19, pages 4605–4612. AAAI Press, 2019.

[29] V. A. Traag, L. Waltman, and N. J. van Eck. From louvain to leiden:
guaranteeing well-connected community. Scientific Reports, 9(1):5233,
2019.

[30] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller.
Graph clustering with graph neural networks. J. Mach. Learn. Res.,
24(1), 2024.

[31] Deepak Verma and Marina Meilă. A comparison of spectral clustering
algorithms, 2003.

[32] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information
theoretic measures for clusterings comparison: is a correction for chance
necessary? In Proceedings of the 26th Annual International Conference
on Machine Learning, ICML ’09. ACM, 2009.

[33] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and
Chengqi Zhang. Attributed graph clustering: A deep attentional em-
bedding approach. In Twenty-Eighth International Joint Conference on
Artificial Intelligence, 2019.

[34] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan
Achan. Inductive representation learning on temporal graphs, 2020.

[35] Kevin S. Xu and Alfred O. Hero. Dynamic stochastic blockmodels
for time-evolving social networks. IEEE Journal of Selected Topics in
Signal Processing, 8(4):552–562, 2014.

[36] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Attributed
network embedding via subspace discovery. Data Mining and Knowl-
edge Discovery, 33(6):1953–1980, 2019.

