
NetworkX-Temporal: Building, manipulating, and

analyzing dynamic graph structures

Nelson A. R. A. Passosa,b, Emanuele Carlinib, Salvatore Tranib

aUniversity of Pisa, Pisa, PI, 56127, Italy
bNational Research Council, Pisa, PI, 56124, Italy

Abstract

NetworkX-Temporal is a Python package that extends the popular Net-
workX library to dynamic graphs, enabling the modeling and analysis of
time-evolving complex systems. As core features, it provides ways to slice
and visualize graphs as a sequence of snapshots, transform or convert be-
tween different representations and formats, and compute temporal metrics
and properties. It is designed to be flexible and easily extensible, suiting a
wide range of applications, and may serve as a hub for temporal graph algo-
rithm implementations. We present its design and implementation, elaborate
on its key features, and describe some use cases to illustrate its capabilities.

Keywords: Network Science, Dynamic Graphs, Temporal Networks

Metadata

C1 Current code version 1.3
C2 Permanent link to code/repository used for this

code version
https://github.com/nelsonaloysio/

networkx-temporal

C3 Permanent link to Reproducible Capsule https://pypi.org/project/networkx-temporal/

C4 Legal Code License BSD License
C5 Code versioning system used Git
C6 Software code languages, tools, and services used Python
C7 Compilation requirements, operating environ-

ments & dependencies
Python ≥ 3.7

C8 Link to developer documentation/manual https://networkx-temporal.readthedocs.io

C9 Support email for questions nelson.reis@phd.unipi.it

Table 1: Code metadata.

1. Motivation and significance

Networks — systems of interacting objects — are ubiquitous structures formed
by both natural and artificially-controlled processes, such as molecules and

Preprint submitted to SoftwareX May 14, 2025

https://github.com/nelsonaloysio/networkx-temporal
https://github.com/nelsonaloysio/networkx-temporal
https://pypi.org/project/networkx-temporal/
https://networkx-temporal.readthedocs.io


food webs, or the World Wide Web and transportation systems, respectively.
Graphs, mathematical representations of networks where nodes (vertices)
take the place of objects and edges (arcs) represent the interactions con-
necting them, are widely used to model such systems, providing a powerful
and flexible framework for analyzing their functional properties. The study
of networks through the lens of graph theory has gained significant atten-
tion in the last century, leading to the emergence of a new body of research
known as Network Science [1], with a history of multidisciplinary contri-
butions coming from mathematicians, physicists, biologists, sociologists and
more. It has since provided valuable insights into the structure and dynamics
of networks, with wide-ranging applications for machine learning, materials
science, anomaly detection, quantum chemistry, and many others [2, 3, 4].

In real-world networks, interactions between entities are rarely fixed, but
rather undergo continuous changes over time. For instance, the relation-
ships between individuals in a social network may evolve in both quantitave
and qualitative terms, as new connections are formed and existing ones are
dissolved; the flow of information in a communication network may vary de-
pending on the time of day or week; and biological responses to stimuli can
alter significantly based on the endogenous timing systems of different organ-
isms, i.e., their circadian rhythms. This added complexity, however, poses
significant new challenges, as these systems exhibit intricate and non-trivial
patterns that are not adequately captured using traditional methods. Such
systems are often modeled as dynamic graphs instead, where the network
structure changes over time — allowing for a more accurate representation of
its underlying processes and ultimately providing insights unattainable using
static graph representations, such as the identification of temporal patterns
and the prediction of future interactions based on past observed behavior.

Research on dynamic graphs has gained traction in recent years, although
there is still a lack of software covering the full range of functionalities re-
quired for aptly handling time-varying relational data in an intuitive manner
— that is, the creation, manipulation, analysis, and visualization of dynamic
graphs. The presented software aims to address this gap by providing a
comprehensive and easily extensible set of functionalities for working with
temporal networks, leveraging existing solutions to facilitate its adoption
and integrating with other graph exploration and machine learning libraries.
This paper describes the software’s architecture and design, including its
core components; discusses its impact and potential toward several applica-
tions; and provides examples of usage in simulated scenarios, highlighting its
capabilities and easy of use for researchers and practitioners alike.

2



2. Software description

NetworkX-Temporal is a programming library for complex network analy-
sis, specifically designed to handle dynamic graphs. It is built on top of
NetworkX [5], a widely used library for static graph analysis, extending its
functionalities to support time-varying relational data, while adhering to its
API standards and providing a seamless integration with its data structures
and implemented algorithms. The code is written in Python, leveraging its
simplicity and readability, and is available under the open-source 3-clause
BSD license, allowing for its free use, modification, and redistribution.

2.1. Software components

The software is designed to be modular and extensible, following the prin-
ciples of object-oriented programming to ensure a clean and maintainable
codebase, with a clear separation between core functionalities. Figure 2.1
depicts an overview of its architecture and highlights its main components.

NetworkX-Temporal

algorithms

classes

drawing

generators

readwrite

transform

typing

utils

centralization()

...

TemporalGraph

TemporalDiGraph

TemporalMultiGraph

TemporalMultiDiGraph

temporal graph()

...

draw()

...

dynamic sbm()

...

read graph()

write graph()

...

from events()

from snapshots()

from static()

from unified()

...

...

convert

partitions()

...

Figure 1: Overview of software structure. The diagram depicts modules (blue),
classes (green), and functions (orange). For brevity, only some classes and functions
exposed on package import are shown as examples. Full documentation available online.

3



Classes and functions are organized into modules, each responsible for a spe-
cific aspect of the library’s functionality, following a structure that mimics
that of NetworkX: the algorithms module implements temporal centrality
and community measures; classes defines the main temporal graph classes
and their methods; drawing contains functions for visualizing graphs; gen-
erators provides functions to create synthetic datasets; readwrite imple-
ments functions to import and export data; transform provides functions
to convert between different temporal graph representations; typing defines
package-specific type hints; and utils contains miscellaneous functions, for
example, that integrate its data structures with other (external) libraries in
the Python ecosystem. On package import, users are exposed to all of the li-
brary’s functionalities through a single entry point, with the most commonly
used classes and functions available in the top-level namespace.

The software is bundled with a comprehensive documentation to guide users
through the available functionalities, including a set of step-by-step tutorials
showcasing its main features. The documentation is generated using Sphinx
and includes a detailed description of its implemented classes and functions,
with common examples of usage illustrated through code snippets.

2.2. Software functionalities

The following subsections provide an overview of the main functionalities
provided by the software, broadly categorized into four main areas: building,
analyzing, visualizing, and importing/exporting dynamic graph data.

Building dynamic graphs

Dynamic graphs are implemented by inheriting from and extending Net-
workX’s static graph classes, enabling seamless integration with its existing
functionalities and algorithms. The library offers four primary classes, as de-
picted in Figure 2.1, which support various graph configurations, including
directed or undirected edges, as well as single or multiple pairwise interac-
tions between nodes at each time step (multiplex graphs). A factory function
is also provided to instantiate any of the four main classes based on the input
parameters, and utility functions are available to convert static graph objects
to temporal graph objects and vice versa, ensuring ease of use and interoper-
ability. Moreover, synthetic graph datasets, for instance, based on stochastic
blockmodeling [6] can be created using generator functions, enabling the sim-
ulation of networks with diverse temporal dynamics in a controlled manner.
Lastly, graph objects built with the library can be modified through built-in

4



methods in a familiar way, allowing adding, removing, and altering nodes,
edges, and their attributes, adhering to NetworkX naming conventions to im-
prove workflow compatibility and ensure a consistent and intuitive interface.

The software supports discrete-time (snapshot-based) and continuous-time
(event-based) representations of temporal graphs, allowing users to choose
the most suitable format for their specific needs. In discrete-time represen-
tations, a temporal graph correspond to a sequence of static graphs, i.e.,
GS := {G1, . . . , GT |G := (V,E), T ∈ N}, where each object G ∈ G is a static
graph at a time step t ≤ T , and V and E are its set of nodes and edges, re-
spectively. This is the most common representation for temporal graphs, and
may be reduced to a single multiplex graph with timestamped nodes/edges in
case node attributes do not change over time. The software uses NetworkX’s
built-in data structures to represent the underlying static graphs, allowing
for easy manipulation and analysis of the network’s structure at different
time points or aggregated intervals. Snapshots may be obtained and merged
on demand from a temporal graph object by slicing the data using the soft-
ware’s built-in functions, resulting in native NetworkX subgraph views that
reference the original nodes, edges, and their attributes. This is particularly
useful when working with larger datasets or multiple intervals of interest,
allowing for more efficient memory usage by avoiding data duplication unless
explicitly required for further tasks, e.g., defining dynamic node attributes.
The total memory saved by using native NetworkX subgraph views depends
on the number of snapshots generated and the size of the original graph.

Instead, the continuous-time representation of temporal graphs is based on
the concept of edge-level events, where each event corresponds to a pairwise
interaction between nodes at a specific time. The graph therefore consists of
a set of events, i.e., GE := {ε1, . . . , εT | ε := (u, v, t, δ), t ∈ R+}, where each
event εt ∈ G is a pairwise interaction between nodes u and v at a time t, and δ
is an optional integer or floating point representing an edge addition (1), edge
removal (-1), or the duration of the interaction, respectively. In this case,
slicing the data simply involves discretizing or filtering the events within a
specific interval. This representation therefore supports distinct ways to store
relational data that fits different use cases, possibly leading to more compact
data representations that may be more suitable for certain algorithms and
applications, such as storing relational data with irregular sampling rates.
Possible limitations include graphs with isolated nodes without self-loops and
the need to separately store node-level attributes in one or more dictionaries.

Alternatively, it is possible to generate unrolled (multislice) representations
of temporal graphs, in which a single data object contains the original net-

5



Temporal graph Unrolled temporal graph

Snapshot-based temporal graph
t = 0 t = 1 t = 2 t = 3

Original nodes

Newly added nodes

Original edges

Newly added edges

Figure 2: Temporal graph representations. A directed graph with 6 nodes and 8
edges is represented in static (top left), unrolled (top right), and snapshot-based (bottom)
forms. Edges are annotated with a timestamp representing the pairwise interaction time.
In the unrolled representation, additional edge couplings linking time-adjacent node copies
in the graph are highlighted. All graphs were created and rendered using the software.

work data, plus additional time-adjacent node copies and edge couplings
linking them. Similar to the snapshot-based representation, this is a useful
alternative for storing temporal graphs with dynamic node attributes in a
single object, and may be by temporal metrics and algorithms, e.g., based
on directed flows [7]. Figure 2 provides an illustrative comparison of these
representations rendered by the software, constructed from the same data
(see Section 2.3). The choice of representation is therefore left to the user,
who may opt for the most suitable format to balance computational efficiency
and analysis needs, switching between them at will to perform different tasks.

6



Analysis of dynamic graphs

The software provides algorithms specifically designed for temporal networks,
allowing their evolving structure to be taken into account for analysis and
exploration tasks. Specifically, it implements node-level centrality measures
adapted for dynamic graphs, such as temporal closeness and betweenness [8],
as well as graph-level metrics, including degree centralization [9], multislice
and longitudinal modularity [10, 11]. By leveraging the temporal information
encoded within, these metrics can provide a more accurate analysis and a
deeper understanding of the network’s properties, enabling the identification
of key nodes that play a crucial role in shaping its behavior, as well as the
discovery of patterns and trends that may not be apparent otherwise.

As algorithms and metrics may expect a sequence of snapshots as input, the
software enables users to slice temporal graph objects according to different
criteria, thus enabling their fine-grained analysis. While the default number
of snapshots returned when slicing the graph equals the number of unique
timestamps in the data, a quantile-based cut may be employed to determine
the number of snapshots based on node or edge activity. These methods
are particularly useful when pairwise interactions are not evenly distributed
across time, allowing to enforce a fixed number of intervals or obtaining snap-
shots of balanced order or size, depending on whether node-level or edge-level
attributes are used to acquire their interaction times. Alternatively, users
can define a specific number of snapshots by sorting edges, nodes, or their
attributes by their order of appearance in the graph, allowing for a more
flexible and tailored approach to obtaining the desired temporal representa-
tion. The resulting snapshots can be further processed to extract relevant
information, such as the most active nodes and most frequent interactions,
providing valuable insights into their individual and collective behavior.

In sum, the software provides a growing set of functions for the analysis
of temporal networks, enabling users to extract relevant information and
gain insights into their evolving structure and dynamics. Furthermore, the
integration with the NetworkX library allows for the application of its im-
plemented algorithms on a snapshot-level basis, allowing to leverage a wide
range of established graph analysis techniques aimed for static graphs.

Visualization of dynamic graphs

Drawing graphs is supported by the software through a set of functions to
create static or dynamic visualizations, currently based on the Matplotlib
[12] library. Functions are provided to create static visualizations, with the

7



possibility of customizing the node and edge colors, sizes, labels, and other
attributes. Node positions may be set manually or computed automatically
using layout algorithms available in NetworkX, while further customization
is made possible by Matplotlib itself, such as using color maps and adding
legends to figures, among others. The resulting plots may be saved as sepa-
rate image files, displayed interactively, or processed by an external software
to showcase the network’s temporal evolution in a visually appealing way.

As with other presented functionalities, the drawing module is designed to be
easily extensible and customizable, and allows users to tailor the generated
outputs to their specific needs. External visualization libraries may also be
used to create more advanced plots, such as 3-dimensional renderings, or to
integrate the temporal graph with other data sources, such as geographical
maps. Large-scale networks may be processed by aggregating nodes and
edges in different intervals, filtering the data to display only a subset of the
interactions, thus reducing the complexity of the visualization and making
it more interpretable. Lastly, exporting the temporal graphs to disk allows
for the use of external graph exploration tools aimed at exploratory data
analysis, which enable interactively visualizing the data using different tools
designed for this specific purpose, such as Gephi [13] and Cytoscape [14].

Converting and exporting dynamic graphs

Temporal graphs built with the software may be exported to disk using its
built-in functions, which support the same formats compatible with the ver-
sion of NetworkX installed in the environment (CSV, GraphML, GEXF,
JSON and others). The same formats are also supported for importing data
from disk, allowing users to easily load existing datasets into the software.

To allow preserving dynamically-defined node and edge attributes, option
is given to save temporal graphs as a single compressed file, with each cre-
ated snapshot stored as a separate object within. Supported compression
algorithms are the same as those available in the standard zipfile module
in Python (ZIP, BZIP2, LZMA). The level of compression may be adjusted
by the user, and the resulting file may also be easily loaded back into the
software, preserving all information such as node features, edge weights, and
graph attributes, as well as aggregated intervals — allowing to easily store
and transfer data without losing any information or requiring additional pro-
cessing steps to obtain the snapshots. Alternatively, uncompressing the file
allows to further process the data using external tools or libraries. The use
of standardized file formats ensures software compatibility with other graph
analysis tools, and allows sharing data between different research groups and

8



Library Parameter (Package) Calls (Function)

Deep Graph Library "dgl" convert.to dgl

DyNetX "dynetx" convert.to dynetx

graph-tool "graph tool" convert.to graph tool

igraph "igraph" convert.to igraph

NetworKit "networkit" convert.to networkit

PyTorch Geometric "torch geometric" convert.to torch geometric

SNAP "snap" convert.to snap

StellarGraph "stellargraph" convert.to stellargraph

Teneto "teneto" convert.to teneto

Table 2: Available conversion functions to other libraries, as of the current version.

applications without the need for custom data formats or conversion scripts.

The software facilitates seamless integration with other prominent graph li-
braries in the Python ecosystem, including DyNetX [15], graph-tool [16],
igraph [17], NetworKit [18] and others, as shown in Table 2.2. This enables
users to leverage their unique strengths and capabilities, offering a convenient
way to harness their advanced algorithms and data structures, which sub-
stantially differ among them — for example, Teneto [19] is a library tailored
for temporal networks, while SNAP [20] is a general-purpose solution for ef-
ficient manipulation of large-scale networks. Machine learning research may
also benefit from this integration, allowing to convert data to the formats
used by, for example, Deep Graph Library [21], PyTorch Geometric [22], and
StellarGraph [23] — libraries widely used for graph representation learning
and deep learning tasks, such as node classification and link prediction. A
top-level function is provided to convert temporal graphs to these formats,
where the received parameter defines the target library (see Section 2.3 for
an example). To reduce package dependencies and reduce loading time, the
target library is imported only when the conversion function is called.

The software may therefore be used to preprocess data for diverse tasks,
ranging from exploratory data analysis to machine learning applications. Ul-
timately, the software’s interoperability with other frameworks enhances its
versatility and expands its potential applications to fit a variety of use cases.

2.3. Sample code snippet

The following is a quick example of the package in action, covering its basic
functionalities: building, slicing, visualizing and converting temporal graphs.

9

https://www.dgl.ai
https://dynetx.readthedocs.io
https://graph-tool.skewed.de
https://igraph.org/python
https://networkit.github.io
https://pytorch-geometric.readthedocs.io
https://snap.stanford.edu
https://stellargraph.readthedocs.io
https://teneto.readthedocs.io


1 import networkx_temporal as tx

2

3 TG = tx.TemporalDiGraph()

4

5 TG.add_edge("a", "b", time=0)

6 TG.add_edge("c", "b", time=1)

7 TG.add_edge("d", "c", time=2)

8 TG.add_edge("d", "e", time=2)

9 TG.add_edge("a", "c", time=2)

10 TG.add_edge("f", "e", time=3)

11 TG.add_edge("f", "a", time=3)

12 TG.add_edge("f", "b", time=3)

13

14 TG = TG.slice(attr="time")

15

16 tx.draw(TG, layout="kamada_kawai", figsize=(8, 2))

<Figure size 800x200 with 4 Axes>

The code creates a directed temporal graph with 6 nodes and 8 timestamped
edges, which is then sliced into snapshots based on unique timestamps. Snap-
shots are visualized using a predefined layout algorithm [24] and Matplotlib
as the default backend (see Figure 2, bottom row for the resulting plot).
Graph objects can be further processed using built-in methods and functions
— for example, converting to a different format or representation both take
a single line of code using methods available from the instantiated object.

1 TG.convert(to="torch_geometric")

[Data(edge_index=[2, 1], time=[1], num_nodes=2),

...,

Data(edge_index=[2, 3], time=[3], num_nodes=4)]

1 TG.to_events(delta="int")

[('a', 'b', 0, 1),

...,

('d', 'e', 3, -1)]

These snippets demonstrate the ease of use in building, visualizing, and pro-
cessing temporal graphs using the presented software. More advanced exam-
ples and step-by-step tutorials are available in the software’s documentation,
providing a useful guide to its functionalities to help users get started.

10



3. Illustrative example

We present a simple example to illustrate the software’s capabilities and
demonstrate its potential for analyzing temporal networks. Community de-
tection is a fundamental task in Network Science [25], and the following ex-
ample showcases the benefits of considering a network’s temporal dynamics
for community detection tasks, in contrast to static graph representations.

As a first step, we employ NetworkX’s built-in function to generate a toy
network with a simple Stochastic Block Model (SBM) [6], consisting of 4
snapshots with 5 clusters of 5 nodes each. The network evolution consists of

Community ground truths
t = 0 t = 1 t = 2 t = 3

Modularity optimization on temporal graph
t = 0 t = 1 t = 2 t = 3

On static graph On each snapshot
t = 0 t = 1 t = 2 t = 3

Figure 3: Community detection on a temporal graph. Graphs were generated
by SBM with decreasing assortativeness. We display the node ground truths (top) and
the resulting communities obtained by modularity optimization on the unified temporal
graph (middle), on the static graph (bottom left), and on each snapshot (bottom right).
Within-community edges are shown colored. All graphs were rendered using the software.
The code to reproduce this example is included in the online software documentation.

11



an increasing number of connections among nodes in different communities
— resulting in graphs with the same community structure, but decreasing
assortativity. Figure 3 displays the generated graphs, with the ground truths
displayed at the top. On each plot, we highlight node memberships and
within-community edges in different colors, keeping node positions fixed over
time to allow visualizing the change in their connections as the size of the
graph increases. Note that nodes do not change their memberships over time.

Next, we attempt to retrieve the true communities using a community detec-
tion algorithm. For simplicity, we choose the Leiden method [26] and employ
modularity optimization as a quality function — one of the most widely em-
ployed methods for this task [27]. Considering the network as a single static
graph, disregarding its temporal information, results in the algorithm fail-
ing to retrieve the true communities, possibly due to the amount of noise
and decreasing assortativity introduced by the temporal evolution. Figure 3
(bottom left) shows the retrieved communities by the algorithm.

We then run the same algorithm on each of the snapshots generated by
SBM. While the algorithm correctly retrieves the clusters on the first graph,
it fails to do so on the subsequent graphs, as shown in Figure 3 (bottom right).
Community indices are also not fixed across snapshots, introducing additional
challenges to track communities over time, even in case the ground truths
for each snapshot were successfully retrieved by employing this approach.

Lastly, we run the same algorithm on the temporal graph, adding edge
couplings between time-adjacent node copies, resulting in a multislice [10]
graph with the same order and size as the one shown in Figure 2 (top right).
Although modularity optimization expects assortative community structures,
this simple procedure allowed the algorithm to correctly retrieve the ground
truths in all snapshots (slices), while maintaining community indices consis-
tent across time. The retrieved communities for each snapshot are displayed
in Figure 3 (middle row), where we can see that the algorithm successfully
identifies the true communities, in spite of their decreasing assortativity.

This very simple example demonstrates how considering a network’s temporal
dimension can improve community detection, which may likewise be crucial
for various objectives involving modeling and analyzing dynamic graphs. The
same principle applies to many other tasks, where the network’s evolution
can provide valuable insights into its structure and behavior. The software
therefore provides a flexible framework for working with dynamic graphs,
which may potentially benefit a variety of research areas and applications.

12



4. Impact and limitations

The software is expected to have a positive impact for studies taking ad-
vantage of dynamic graphs, as it provides a unified framework based on a
widely used library for complex network analysis, extending its functionali-
ties to support time-varying relational data and well integrating with other
solutions for graph exploration and machine learning. Its user-friendly API
make it accessible to researchers and practitioners from various fields, stream-
lining their workflow by providing a familiar interface that does not require
extensive programming knowledge or expertise to be employed.

Its adoption and interest by the community is reflected in its download statis-
tics1, with approximately 2,000 downloads from the Python Package Index
(PyPI) in the month of its first stable release (September 2024). Researchers
from both academia and industry have reported using the software in their
work, and have provided positive feedback on their experience. It has ben
successfully used to study communication patterns in social networks, struc-
ture musical environments, analyze production systems, and preprocess data
for machine learning tasks [28, 29, 30]. Other applications this software may
benefit include studies in epidemiology, traffic flow, and systemic risk esti-
mation, along with others that employ dynamic graphs to model data.

Although these aspects highlight the software’s potential in providing a com-
mon platform to foster collaboration in the field, it is still in its early stages
of development, and several areas for improvement remain. Whereas it does
not purport to be a one-size-fits-all solution for temporal networks, it may
serve as a starting point that may be extended and improved over time to
meet different needs and use cases. Several challenges and limitations beyond
the need for more efficient algorithms and visualization methods remain to
be addressed, including the development of more user-friendly graphical user
interfaces, to facilitate the adoption of these techniques by researchers and
practitioners from different fields. Further work is needed to fully realize the
potential of the software and to address these challenges and limitations.

5. Conclusion

The need for unified frameworks for temporal graph analysis is becoming
increasingly important as the field continues to grow, and the development

1Publicly available at: https://pypistats.org/packages/networkx-temporal.

13

https://pypistats.org/packages/networkx-temporal


of more easy-to-use tools and libraries is crucial to facilitate the adoption of
its latest advancements. NetworkX-Temporal aims to make this goal more
achievable, offering a landmark for further development and implementa-
tion of dynamic graphs in diverse applications, and is intended as a hub for
algorithm implementations targeting temporal networks, fostering the devel-
opment of new methods and tools for their analysis. We plan to continue
extending the library toward the future, support additional data formats and
libraries, and different temporal metrics introduced to the study of evolving
networks. Finally, we hope the software will help foster the development of
new algorithms and tools for the analysis of dynamic graphs, as well as facil-
itate their integration with other fields of research and application scenarios.

References

[1] M. Newman, Networks, 2nd Edition, Oxford University Press, 2018.

[2] P. Reiser, M. Neubert, A. Eberhard, L. Torresi, C. Zhou, C. Shao,
H. Metni, C. van Hoesel, H. Schopmans, T. Sommer, P. Friederich,
Graph neural networks for materials science and chemistry, Communica-
tions Materials 3 (1) (Nov. 2022). doi:10.1038/s43246-022-00315-6.
URL http://dx.doi.org/10.1038/s43246-022-00315-6

[3] A. D. Pazho, G. A. Noghre, A. A. Purkayastha, J. Vempati, O. Martin,
H. Tabkhi, A Survey of Graph-Based Deep Learning for Anomaly Detec-
tion in Distributed Systems , IEEE Transactions on Knowledge & Data
Engineering 36 (01) (2024) 1–20. doi:10.1109/TKDE.2023.3282898.
URL https://doi.ieeecomputersociety.org/10.1109/TKDE.2023.

3282898

[4] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural
message passing for quantum chemistry, in: 34th International Confer-
ence on Machine Learning - Volume 70, ICML’17, JMLR.org, 2017, pp.
1263–1272.

[5] A. A. Hagberg, D. A. Schult, P. J. Swart, Exploring network structure,
dynamics, and function using networkx, in: G. Varoquaux, T. Vaught,
J. Millman (Eds.), Proceedings of the 7th Python in Science Conference,
Pasadena, CA USA, 2008, pp. 11–15.
URL https://conference.scipy.org/proceedings/scipy2008/

paper_2/

14

http://dx.doi.org/10.1038/s43246-022-00315-6
https://doi.org/10.1038/s43246-022-00315-6
http://dx.doi.org/10.1038/s43246-022-00315-6
https://doi.ieeecomputersociety.org/10.1109/TKDE.2023.3282898
https://doi.ieeecomputersociety.org/10.1109/TKDE.2023.3282898
https://doi.org/10.1109/TKDE.2023.3282898
https://doi.ieeecomputersociety.org/10.1109/TKDE.2023.3282898
https://doi.ieeecomputersociety.org/10.1109/TKDE.2023.3282898
https://conference.scipy.org/proceedings/scipy2008/paper_2/
https://conference.scipy.org/proceedings/scipy2008/paper_2/
https://conference.scipy.org/proceedings/scipy2008/paper_2/
https://conference.scipy.org/proceedings/scipy2008/paper_2/


[6] P. W. Holland, K. B. Laskey, S. Leinhardt, Stochastic block-
models: First steps, Social Networks 5 (2) (1983) 109–137.
doi:https://doi.org/10.1016/0378-8733(83)90021-7.
URL https://www.sciencedirect.com/science/article/pii/

0378873383900217

[7] H. Kim, R. Anderson, Temporal node centrality in complex networks,
Physical Review E 85 (2) (Feb. 2012). doi:10.1103/physreve.85.

026107.
URL http://dx.doi.org/10.1103/PhysRevE.85.026107

[8] H. Kim, R. Anderson, Temporal node centrality in complex networks,
Physical Review E 85 (2) (Feb. 2012). doi:10.1103/physreve.85.

026107.
URL http://dx.doi.org/10.1103/PhysRevE.85.026107

[9] L. C. Freeman, Centrality in social networks conceptual clarification,
Social Networks 1 (3) (1978) 215–239. doi:10.1016/0378-8733(78)

90021-7.
URL http://dx.doi.org/10.1016/0378-8733(78)90021-7

[10] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, J.-P. Onnela, Com-
munity structure in time-dependent, multiscale, and multiplex networks,
Science 328 (5980) (2010) 876–878. doi:10.1126/science.1184819.
URL https://doi.org/10.1126/science.1184819

[11] V. Brabant, Y. Asgari, P. Borgnat, A. Bonifati, R. Cazabet, Longitudi-
nal modularity, a modularity for link streams, EPJ Data Science 14 (1)
(Feb. 2025). doi:10.1140/epjds/s13688-025-00529-x.
URL http://dx.doi.org/10.1140/epjds/s13688-025-00529-x

[12] J. D. Hunter, Matplotlib: A 2d graphics environment, Computing in
Science & Engineering 9 (3) (2007) 90–95. doi:10.1109/mcse.2007.55.
URL http://dx.doi.org/10.1109/MCSE.2007.55

[13] M. Bastian, S. Heymann, M. Jacomy, Gephi: An open source software
for exploring and manipulating networks (2009).
URL http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/

154

[14] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, T. Ideker, Cytoscape: A software environment

15

https://www.sciencedirect.com/science/article/pii/0378873383900217
https://www.sciencedirect.com/science/article/pii/0378873383900217
https://doi.org/https://doi.org/10.1016/0378-8733(83)90021-7
https://www.sciencedirect.com/science/article/pii/0378873383900217
https://www.sciencedirect.com/science/article/pii/0378873383900217
http://dx.doi.org/10.1103/PhysRevE.85.026107
https://doi.org/10.1103/physreve.85.026107
https://doi.org/10.1103/physreve.85.026107
http://dx.doi.org/10.1103/PhysRevE.85.026107
http://dx.doi.org/10.1103/PhysRevE.85.026107
https://doi.org/10.1103/physreve.85.026107
https://doi.org/10.1103/physreve.85.026107
http://dx.doi.org/10.1103/PhysRevE.85.026107
http://dx.doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/0378-8733(78)90021-7
http://dx.doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1126/science.1184819
https://doi.org/10.1126/science.1184819
https://doi.org/10.1126/science.1184819
https://doi.org/10.1126/science.1184819
http://dx.doi.org/10.1140/epjds/s13688-025-00529-x
http://dx.doi.org/10.1140/epjds/s13688-025-00529-x
https://doi.org/10.1140/epjds/s13688-025-00529-x
http://dx.doi.org/10.1140/epjds/s13688-025-00529-x
http://dx.doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/mcse.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1101/gr.1239303


for integrated models of biomolecular interaction networks, Genome Re-
search 13 (11) (2003) 2498–2504. doi:10.1101/gr.1239303.
URL http://dx.doi.org/10.1101/gr.1239303

[15] G. Rossetti, Pyup.Io Bot, E. T. Hoeven, U. Norman, D. Jorquera,
Hanga Dormán, M. Dorner, Giuliorossetti/dynetx: v0.3.2 (2023). doi:
10.5281/ZENODO.3953118.
URL https://zenodo.org/record/3953118

[16] T. P. Peixoto, The graph-tool python library (2017). doi:

10.6084/M9.FIGSHARE.1164194.
URL https://figshare.com/articles/dataset/graph_tool/

1164194

[17] G. Csárdi, T. Nepusz, S. Horvát, V. Traag, F. Zanini, D. Noom, igraph
(2024). doi:10.5281/ZENODO.3630268.
URL https://zenodo.org/doi/10.5281/zenodo.3630268

[18] C. L. Staudt, A. Sazonovs, H. Meyerhenke, Networkit: A tool suite
for large-scale complex network analysis (2014). doi:10.48550/ARXIV.
1403.3005.
URL https://arxiv.org/abs/1403.3005

[19] W. H. Thompson, granitz, V. Harlalka, lcandeago, wiheto/teneto: 0.5.0
(Jan. 2020). doi:10.5281/zenodo.3626827.
URL https://doi.org/10.5281/zenodo.3626827

[20] J. Leskovec, R. Sosič, Snap: A general-purpose network analysis and
graph-mining library, ACM Transactions on Intelligent Systems and
Technology (TIST) 8 (1) (2016) 1.

[21] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, Z. Zhang, Deep graph
library: A graph-centric, highly-performant package for graph neural
networks (2019). doi:10.48550/ARXIV.1909.01315.
URL https://arxiv.org/abs/1909.01315

[22] M. Fey, J. E. Lenssen, Fast graph representation learning with pytorch
geometric (2019). doi:10.48550/ARXIV.1903.02428.
URL https://arxiv.org/abs/1903.02428

[23] C. Data61, Stellargraph machine learning library, https://github.

com/stellargraph/stellargraph (2018).

16

http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1101/gr.1239303
https://zenodo.org/record/3953118
https://doi.org/10.5281/ZENODO.3953118
https://doi.org/10.5281/ZENODO.3953118
https://zenodo.org/record/3953118
https://figshare.com/articles/dataset/graph_tool/1164194
https://doi.org/10.6084/M9.FIGSHARE.1164194
https://doi.org/10.6084/M9.FIGSHARE.1164194
https://figshare.com/articles/dataset/graph_tool/1164194
https://figshare.com/articles/dataset/graph_tool/1164194
https://zenodo.org/doi/10.5281/zenodo.3630268
https://doi.org/10.5281/ZENODO.3630268
https://zenodo.org/doi/10.5281/zenodo.3630268
https://arxiv.org/abs/1403.3005
https://arxiv.org/abs/1403.3005
https://doi.org/10.48550/ARXIV.1403.3005
https://doi.org/10.48550/ARXIV.1403.3005
https://arxiv.org/abs/1403.3005
https://doi.org/10.5281/zenodo.3626827
https://doi.org/10.5281/zenodo.3626827
https://doi.org/10.5281/zenodo.3626827
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1909.01315
https://doi.org/10.48550/ARXIV.1909.01315
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428
https://doi.org/10.48550/ARXIV.1903.02428
https://arxiv.org/abs/1903.02428
https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph


[24] T. Kamada, S. Kawai, An algorithm for drawing general undirected
graphs, Information Processing Letters 31 (1) (1989) 7–15. doi:10.

1016/0020-0190(89)90102-6.
URL http://dx.doi.org/10.1016/0020-0190(89)90102-6

[25] S. Fortunato, Community detection in graphs, Physics Reports 486 (3-5)
(2010) 75–174. doi:10.1016/j.physrep.2009.11.002.

[26] V. A. Traag, L. Waltman, N. J. van Eck, From louvain to leiden: guaran-
teeing well-connected community, Scientific Reports 9 (1) (2019) 5233.
doi:10.1038/s41598-019-41695-z.

[27] T. P. Peixoto, Descriptive vs. Inferential Community Detection in Net-
works: Pitfalls, Myths and Half-Truths, Elements in the Structure and
Dynamics of Complex Networks, Cambridge University Press, 2023.
doi:10.1017/9781009118897.

[28] N. A. R. A. Passos, E. Carlini, S. Trani, Deep community detection
in attributed temporal graphs: Experimental evaluation of current ap-
proaches, in: Proceedings of the 3rd GNNet Workshop on Graph Neu-
ral Networking Workshop, GNNet ’24, Association for Computing Ma-
chinery, New York, NY, USA, 2024, pp. 1–6. doi:10.1145/3694811.

3697822.
URL https://doi.org/10.1145/3694811.3697822

[29] N. A. R. A. Passos, E. Carlini, S. Trani, PubMed-Temporal: A dy-
namic graph dataset with node-level features (Oct. 2024). doi:10.5281/
zenodo.13932076.
URL https://doi.org/10.5281/zenodo.13932076

[30] F. van Merode, H. Boersma, F. Tournois, W. Winasti, N. A. Reis de
Almeida Passos, A. v. d. Ham, Using entropy metrics to analyze infor-
mation processing within production systems: The role of organizational
constraints, Logistics 9 (2) (2025). doi:10.3390/logistics9020046.
URL https://www.mdpi.com/2305-6290/9/2/46

17

http://dx.doi.org/10.1016/0020-0190(89)90102-6
http://dx.doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1016/0020-0190(89)90102-6
http://dx.doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1017/9781009118897
https://doi.org/10.1145/3694811.3697822
https://doi.org/10.1145/3694811.3697822
https://doi.org/10.1145/3694811.3697822
https://doi.org/10.1145/3694811.3697822
https://doi.org/10.1145/3694811.3697822
https://doi.org/10.1145/3694811.3697822
https://doi.org/10.5281/zenodo.13932076
https://doi.org/10.5281/zenodo.13932076
https://doi.org/10.5281/zenodo.13932076
https://doi.org/10.5281/zenodo.13932076
https://doi.org/10.5281/zenodo.13932076
https://www.mdpi.com/2305-6290/9/2/46
https://www.mdpi.com/2305-6290/9/2/46
https://www.mdpi.com/2305-6290/9/2/46
https://doi.org/10.3390/logistics9020046
https://www.mdpi.com/2305-6290/9/2/46

	Motivation and significance
	Software description
	Software components
	Software functionalities
	Sample code snippet

	Illustrative example
	Impact and limitations
	Conclusion

