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 A B S T R A C T

NetworkX-Temporal is a Python package that extends the popular NetworkX library to dynamic graphs, 
enabling the modeling and analysis of time-evolving complex systems. As core features, it provides ways 
to generate, slice and visualize graphs as sequences of snapshots, transform or convert between different 
representations and formats, and compute temporal metrics and properties. It is designed to be flexible and 
easily extensible, suiting a wide range of applications, and may serve as a hub for temporal graph algorithm 
implementations. We present its design and implementation, elaborate on its key features, and describe some 
use cases to illustrate its capabilities.
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. Motivation and significance

Networks — systems of interacting objects — are ubiquitous struc-
ures formed by both natural and artificially-controlled processes, such 
s molecules and food webs, or the World Wide Web and transporta-
ion systems, respectively. Graphs, mathematical representations of 
etworks where nodes (vertices) take the place of objects and edges 
arcs) represent the interactions connecting them, are widely used to 
odel such systems, providing a powerful and flexible framework for 
nalyzing their functional properties. The study of networks through 
he lens of graph theory has gained significant attention in the last 
entury, leading to the emergence of a new body of research known as 
etwork Science [1], with a history of multidisciplinary contributions 
oming from mathematicians, physicists, biologists, sociologists and 
ore. It has since provided valuable insights into the structure and 
ynamics of networks, with wide-ranging applications for machine 

∗ Corresponding author at: University of Pisa, Pisa, PI, 56127, Italy.
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learning, materials science, anomaly detection, molecular prediction, 
and many others [2–4].

In real-world networks, interactions between entities are rarely 
fixed, but rather undergo continuous changes over time. For instance, 
the relationships between individuals in a social network may evolve in 
both quantitative and qualitative terms, as new connections are formed 
and existing ones are dissolved; the flow of information in a commu-
nication network may vary depending on the time of day or week; 
and biological responses to stimuli can alter significantly based on the 
endogenous timing systems of different organisms, i.e., their circadian 
rhythms. This added complexity, however, poses significant new chal-
lenges, as these systems exhibit intricate and non-trivial patterns that 
are not adequately captured using traditional methods. Such systems 
are often modeled as dynamic graphs instead, where the network struc-
ture changes over time — allowing for a more accurate representation 
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of its underlying processes and ultimately providing insights unattain-
able using static graph representations, such as the identification of 
temporal patterns and the prediction of future interactions based on 
past observed behavior.

Research on dynamic graphs has gained traction in recent years, 
although there is still a lack of software covering the full range of 
functionalities required for aptly handling time-varying relational data 
in an intuitive manner — that is, the creation, manipulation, analysis, 
and visualization of dynamic graphs. The presented software aims to 
address this gap by providing a comprehensive and easily extensible 
set of functionalities for working with temporal networks, leveraging 
existing solutions to facilitate its adoption and integrating with other 
graph exploration and machine learning libraries. This paper describes 
the software’s architecture and design, including its core components; 
discusses its impact and potential toward several applications; and 
provides examples of usage in simulated scenarios, highlighting its 
capabilities and easy of use for researchers and practitioners alike.

2. Software description

NetworkX-Temporal is a programming library for complex network 
analysis, specifically designed to handle dynamic graphs. It is built on 
top of NetworkX [5], a widely used library for static graph analysis, ex-
tending its functionalities to support time-varying relational data, while 
adhering to its API standards and providing a seamless integration with 
its data structures and implemented algorithms. The code is written 
in Python, leveraging its simplicity and readability, and is available 
under the open-source 3-clause BSD license, allowing for its free use, 
modification, and redistribution.

2.1. Software components

The software is designed to be modular and extensible, following 
the principles of object-oriented programming to ensure a clean and 
maintainable codebase, with a clear separation between core function-
alities. Fig.  1 depicts an overview of its architecture and highlights its 
main components.

Classes and functions are organized into modules, each responsible 
for a specific aspect of the library’s functionality, following a structure 
that mimics that of NetworkX: the algorithms module implements 
temporal centrality and community measures; classes defines the main 
temporal graph classes and their methods; drawing contains func-
tions for visualizing graphs; generators provides functions to create 
synthetic datasets; readwrite implements functions to import and ex-
port data; transform provides functions to convert between different 
temporal graph representations; typing defines package-specific type 
hints; and utils contains miscellaneous functions, for example, that 
integrate its data structures with other (external) libraries in the Python 
ecosystem. On package import, users are exposed to all of the library’s 
functionalities through a single entry point, with the most commonly 
used classes and functions available in the top-level namespace.

The software is bundled with a comprehensive documentation to 
guide users through the available functionalities, including a set of 
step-by-step tutorials showcasing its main features. The documentation 
is generated using Sphinx and includes a detailed description of its 
implemented classes and functions, with common examples of usage 
illustrated through code snippets.

2.2. Software functionalities

The following subsections provide an overview of the main func-
tionalities provided by the software, broadly categorized into four 
main areas: building, analyzing, visualizing, and importing/exporting 
dynamic graph data.

Building dynamic graphs
Dynamic graphs are implemented by inheriting from and extending 

NetworkX’s static graph classes, enabling seamless integration with its 
existing functionalities and algorithms. The library offers four primary 
classes, as depicted in Fig.  1, which support various graph config-
urations, including directed or undirected edges, as well as single 
or multiple pairwise interactions between nodes at each time step 
(multiplex graphs). A factory function is also provided to instantiate 
any of the four main classes based on the input parameters, and utility 
functions are available to convert static graph objects to temporal 
graph objects and vice versa, ensuring ease of use and interoperability. 
Moreover, synthetic graph datasets, for instance, based on stochastic 
blockmodeling [6] can be created using generator functions, enabling 
the simulation of networks with diverse temporal dynamics in a con-
trolled manner. Lastly, graph objects built with the library can be 
modified through built-in methods in a familiar way, allowing adding, 
removing, and altering nodes, edges, and their attributes, adhering to 
NetworkX naming conventions to improve workflow compatibility and 
ensure a consistent and intuitive interface.

The software supports discrete-time (snapshot-based) and conti-
nuous-time (event-based) representations of temporal graphs, allowing 
users to choose the most suitable format for their specific needs. In 
discrete-time representations, a temporal graph correspond to a se-
quence of static graphs, i.e., 𝑆 ∶= {𝐺1,… , 𝐺𝑇 ∣ 𝐺 ∶= (𝑉 ,𝐸), 𝑇 ∈ N}, 
where each object 𝐺𝑡 ∈  is a static graph at a time step 𝑡 ≤ 𝑇 , and 
𝑉  and 𝐸 are its set of nodes and edges, respectively. This is the most 
common representation for temporal graphs, and may be reduced to 
a single multiplex graph with timestamped nodes/edges in case node 
attributes do not change over time. The software uses NetworkX’s built-
in data structures to represent the underlying static graphs, allowing for 
easy manipulation and analysis of the network’s structure at different 
time points or aggregated intervals. Snapshots may be obtained and 
merged on demand from a temporal graph object by slicing the data 
using the software’s built-in functions, resulting in native NetworkX 
subgraph views that reference the original nodes, edges, and their 
attributes. This is particularly useful when working with larger datasets 
or multiple intervals of interest, allowing for more efficient memory 
usage by avoiding data duplication unless explicitly required for further 
tasks, e.g., defining dynamic node attributes. The total memory saved 
by using native NetworkX subgraph views depends on the number of 
snapshots generated and the size of the original graph.

Instead, the continuous-time representation of temporal graphs is 
based on the concept of edge-level events, where each event corre-
sponds to a pairwise interaction between nodes at a specific time. The 
graph therefore consists of a set of events, i.e., 𝐸 ∶= {𝜀1,… , 𝜀𝑇 ∣ 𝜀 ∶=
(𝑢, 𝑣, 𝑡, 𝛿), 𝑡 ∈ R+}, where each event 𝜀𝑡 ∈  is a pairwise interaction 
between nodes 𝑢 and 𝑣 at a time 𝑡, and 𝛿 is an optional integer or 
floating point representing an edge addition (1), edge removal (−1), 
or the duration of the interaction, respectively. In this case, slicing 
the data simply involves discretizing or filtering the events within a 
specific interval. This representation therefore supports distinct ways 
to store relational data that fits different use cases, possibly leading 
to more compact data representations that may be more suitable for 
certain algorithms and applications, such as storing relational data 
with irregular sampling rates. Known limitations include graphs with 
isolated nodes without self-loops and the need to separately store 
node-level attributes in one or more dictionaries.

Alternatively, it is possible to generate unrolled (multislice) repre-
sentations of temporal graphs, in which a single data object contains 
the original network data, plus additional time-adjacent node copies 
and edge couplings linking them. Similar to the snapshot-based repre-
sentation, this is a useful alternative for storing temporal graphs with 
dynamic node attributes in a single object, and may be preferred for 
temporal metrics and algorithms, e.g., based on directed flows [7]. Fig. 
2 provides an illustrative comparison of these representations rendered 
by the software, constructed from the same data (see Section 2.3). The 
2 
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Fig. 1.  Overview of software structure.  The diagram depicts modules (blue), classes (green), and functions (orange). For brevity, only some classes and functions exposed on 
package import are shown as examples. Full documentation available online.

Fig. 2.  Temporal graph representations.  A directed graph with 6 nodes and 8 edges is represented in static (top left), unrolled (top right), and snapshot-based (bottom) forms. 
Edges are annotated with a timestamp representing the pairwise interaction time. In the unrolled representation, additional edge couplings linking time-adjacent node copies in 
the graph are highlighted. All graphs were created and rendered using the software .

choice of representation is therefore left to the user, who may opt 
for the most suitable format to balance computational efficiency and 

analysis needs, switching between them at will to perform different 
tasks.
3 
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Analysis of dynamic graphs
The software provides algorithms specifically designed for temporal 

networks, allowing their evolving structure to be taken into account 
for analysis and exploration tasks. Specifically, it implements node-
level centrality measures adapted for dynamic graphs, such as temporal 
closeness and betweenness [8], as well as graph-level metrics, including 
degree centralization [9], multislice and longitudinal modularity [10,
11]. By leveraging the temporal information encoded within, these met-
rics can provide a more accurate analysis and a deeper understanding of 
the network’s properties, enabling the identification of key nodes that 
play a crucial role in shaping its behavior, as well as the discovery of 
patterns and trends that may not be apparent otherwise.

As algorithms and metrics may expect a sequence of snapshots 
as input, the software enables users to slice temporal graph objects 
according to different criteria, thus enabling their fine-grained analysis. 
While the default number of snapshots returned when slicing the graph 
equals the number of unique timestamps in the data, a quantile-based 
cut may be employed to determine the number of snapshots based 
on node or edge activity. These methods are particularly useful when 
pairwise interactions are not evenly distributed across time, allowing to 
enforce a fixed number of intervals or obtaining snapshots of balanced 
order or size, depending on whether node-level or edge-level attributes 
are used to acquire their interaction times. Alternatively, users can 
define a specific number of snapshots by sorting edges, nodes, or their 
attributes by their order of appearance in the graph, allowing for a 
more flexible and tailored approach to obtaining the desired temporal 
representation. The resulting snapshots can be further processed to 
extract relevant information, such as the most active nodes and most 
frequent interactions, providing valuable insights into their individual 
and collective behavior.

In sum, the software provides a growing set of functions for the 
analysis of temporal networks, enabling users to extract relevant infor-
mation and gain insights into their evolving structure and dynamics. 
Furthermore, the integration with the NetworkX library allows for 
the application of its implemented algorithms on a snapshot-level 
basis, allowing to leverage a wide range of established graph analysis 
techniques aimed for static graphs.

Visualization of dynamic graphs
Drawing graphs is supported by the software through a set of 

functions to create static or dynamic visualizations, currently based 
on the Matplotlib [12] library. Functions are provided to create static 
visualizations, with the possibility of customizing the node and edge 
colors, sizes, labels, and other attributes. Node positions may be set 
manually or computed automatically using layout algorithms available 
in NetworkX, while further customization is made possible by Mat-
plotlib itself, such as using color maps and adding legends to figures, 
among others. The resulting plots may be saved as separate image 
files, displayed interactively, or processed by an external software to 
showcase the network’s temporal evolution in a visually appealing way.

As with other presented functionalities, the drawing module is 
designed to be easily extensible and customizable, and allows users 
to tailor the generated outputs to their specific needs. External visu-
alization libraries may also be used to create more advanced plots, 
such as 3-dimensional renderings, or to integrate the temporal graph 
with other data sources, such as geographical maps. Large-scale net-
works may be processed by aggregating nodes and edges in different 
intervals, filtering the data to display only a subset of the interactions, 
thus reducing the complexity of the visualization and making it more 
interpretable. Lastly, exporting the temporal graphs to disk allows 
for the use of external graph exploration tools aimed at exploratory 
data analysis, which enable interactively visualizing the data using 
different tools designed for this specific purpose, such as Gephi [13] 
and Cytoscape [14].

Table 1
 Available conversion functions to other libraries, as of the current version. 
 Library Parameter (Package) Calls (Function)  
 DeepGraphLibrary ‘‘dgl’’ convert.to_dgl  
 DyNetX ‘‘dynetx’’ convert.to_dynetx  
 graph-tool ‘‘graph_tool’’ convert.to_graph_tool  
 igraph ‘‘igraph’’ convert.to_igraph  
 NetworKit ‘‘networkit’’ convert.to_networkit  
 PyTorchGeometric ‘‘torch_geometric’’ convert.to_torch_geometric 
 SNAP ‘‘snap’’ convert.to_snap  
 StellarGraph ‘‘stellargraph’’ convert.to_stellargraph  
 Teneto ‘‘teneto’’ convert.to_teneto  

Converting and exporting dynamic graphs
Temporal graphs built with the software may be exported to disk 

using its built-in functions, which support the same formats com-
patible with the version of NetworkX installed in the environment 
(CSV, GraphML, GEXF, JSON and others). The same formats are also 
supported for importing data from disk, allowing users to easily load 
existing datasets into the software.

To allow preserving dynamically-defined node and edge attributes, 
the option to save temporal graphs as a single compressed file is also 
provided, with each created snapshot stored as a separate object within. 
Supported compression algorithms are the same as those available in 
the standard zipfile module in Python (ZIP, BZIP2, LZMA). The level 
of compression may be adjusted by the user, and the resulting file may 
also be easily loaded back into the software, preserving all information 
such as node features, edge weights, and graph attributes, as well 
as aggregated intervals — allowing to easily store and transfer data 
without losing any information or requiring additional processing steps 
to obtain the snapshots. Alternatively, uncompressing the file allows 
to further process the data using external tools or libraries. The use 
of standardized file formats ensures software compatibility with other 
graph analysis tools, and allows sharing data between different research 
groups and applications without the need for custom data formats or 
conversion scripts.

The software facilitates seamless integration with other prominent 
graph libraries in the Python ecosystem, including DyNetX [15], graph-
tool [16], igraph [17], NetworKit [18] and others, as shown in Table  1. 
This enables users to leverage their unique strengths and capabilities, 
offering a convenient way to harness their advanced algorithms and 
data structures, which substantially differ among them — for example, 
Teneto [19] is a library tailored for temporal network analysis, while 
SNAP [20] is a general-purpose solution for efficient manipulation 
of large-scale networks. Machine learning research may also benefit 
from this integration, allowing to convert data to the formats used 
by, for example, Deep Graph Library [21], PyTorch Geometric [22], 
and StellarGraph [23] — libraries widely used for graph representation 
learning and deep learning tasks, such as node classification and link 
prediction. A top-level function is provided to convert temporal graphs 
to these formats, where the received parameter defines the target li-
brary (see Section 2.3 for an example). To reduce package dependencies 
and reduce loading time, the target library is imported only when the 
conversion function is called.

The software may therefore be used to preprocess data for diverse 
tasks, ranging from exploratory analyses to machine learning applica-
tions. Ultimately, the software’s interoperability with other frameworks 
enhances its versatility and expands its potential applications to fit a 
variety of use cases.

2.3. Sample code snippet

The following is a quick example of the package in action, covering 
its basic functionalities: building, slicing, visualizing and converting 
temporal graphs.
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import networkx_temporal as tx

TG = tx.TemporalDiGraph()

TG.add_edge("a", "b", time=0)
TG.add_edge("c", "b", time=1)
TG.add_edge("d", "c", time=2)
TG.add_edge("d", "e", time=2)
TG.add_edge("a", "c", time=2)
TG.add_edge("f", "e", time=3)
TG.add_edge("f", "a", time=3)
TG.add_edge("f", "b", time=3)

TG = TG.slice(attr="time")

tx.draw(TG, layout="kamada_kawai", figsize=(8, 2))

<Figure size 800x200 with 4 Axes>

The code creates a directed temporal graph with 6 nodes and 8 
timestamped edges, which is then sliced into snapshots based on unique 
timestamps. Snapshots are visualized using a predefined layout algo-
rithm [24] and Matplotlib as the default backend (see Fig.  2, bottom 
row for the resulting plot). Graph objects can be further processed using 
built-in methods and functions — for example, converting to a different 
format or representation both take a single line of code using methods 
available from the instantiated object.

TG.convert(to="torch_geometric")

[Data(edge_index=[2, 1], time=[1], num_nodes=2),
 ...,
 Data(edge_index=[2, 3], time=[3], num_nodes=4)]

TG.to_events(delta="int")

[(’a’, ’b’, 0, 1),
 ...,
 (’d’, ’e’, 3, -1)]

These snippets demonstrate the ease of use in building, visualizing, 
and processing temporal graphs using the presented software. More 
advanced examples and step-by-step tutorials are available in the soft-
ware’s documentation, providing a useful guide to its functionalities to 
help users get started.

3. Illustrative example

We present a simple example to illustrate the software’s capabil-
ities and demonstrate its potential for analyzing temporal networks. 
Community detection is a fundamental task in Network Science [25], 
and the following scenario showcases the benefits of considering a net-
work’s temporal dynamics for community detection tasks, in contrast 
to static graph representations.

As a first step, we employ NetworkX’s built-in function to generate a 
toy network with a simple Stochastic Block Model (SBM) [6], consisting 
of 4 snapshots with 5 clusters of 5 nodes each. The network evolution 
consists of an increasing number of connections among nodes in dif-
ferent communities — resulting in graphs with the same community 
structure, but decreasing assortativity. Fig.  3 displays the generated 
graphs, with the ground truths displayed at the top. On each plot, we 
highlight node memberships and within-community edges in different 
colors, keeping node positions fixed over time to allow visualizing the 
change in their connections as the size of the graph increases. Note that, 
in this example, nodes do not change their memberships over time.

Next, we attempt to retrieve the true communities using a com-
munity detection algorithm. For simplicity, we choose the Leiden 
method [26] and employ modularity optimization as a quality function 
— one of the most widely employed methods for this task [27].

Considering the network as a single static graph, disregarding its 
temporal information, results in the algorithm failing to retrieve the 
true communities, possibly due to the amount of noise and decreasing 
assortativity introduced by the temporal evolution. Fig.  3 (bottom left) 
shows the retrieved communities by the algorithm.

We then run the same algorithm on each of the static graph snapshots
generated by SBM. While the algorithm correctly retrieves the clusters 
on the first graph, it fails to do so on the subsequent graphs, as shown 
in Fig.  3 (bottom right). Community indices are also not fixed across 
snapshots, introducing additional challenges to track communities over 
time, even in case the ground truths for each snapshot were successfully 
retrieved by employing this approach.

Lastly, we run the same algorithm on the temporal graph, adding 
edge couplings between time-adjacent node copies, resulting in a mul-
tislice [10] graph with the same order and size as the unrolled repre-
sentation shown in Fig.  2 (top right). Although modularity optimization 
expects assortative community structures, this simple procedure al-
lowed the algorithm to correctly retrieve the ground truths in all 
snapshots, while maintaining community indices fixed over time. The 
retrieved communities for each snapshot are displayed in Fig.  3 (middle 
row), where we can see that the algorithm successfully identifies the 
true communities, in spite of their decreasing assortativity.

This very simple example demonstrates how considering a network’s 
temporal dimension can improve community detection, which may 
likewise be crucial for various objectives involving modeling and an-
alyzing dynamic graphs. The same principle applies to many other 
tasks, where the network’s evolution can provide valuable insights into 
its structure and behavior. The software therefore provides a flexible 
framework for working with dynamic graphs, which may potentially 
benefit a variety of research areas and applications.

4. Impact and limitations

The software is expected to have a positive impact for studies 
taking advantage of dynamic graphs, as it provides a unified framework 
based on a widely used library for complex network analysis, extending 
its functionalities to support time-varying relational data and well 
integrating with other solutions for graph exploration and machine 
learning. Its user-friendly API make it accessible to researchers and 
practitioners from various fields, streamlining their workflow by pro-
viding a familiar interface that does not require extensive programming 
knowledge or expertise to be employed.

Its adoption and interest by the community is reflected in its down-
load statistics1, with approximately 2,000 downloads from the Python 
Package Index (PyPI) in the month of its first stable release (September 
2024). Researchers from both academia and industry have reported 
using the software in their work, and have provided positive feedback 
on their experience. It has ben successfully used to study commu-
nication patterns in social networks, structure musical environments, 
analyze production systems, and preprocess data for machine learning 
tasks [28–30]. Other applications this software may benefit include 
studies in epidemiology, traffic flow, and systemic risk estimation, 
along with others that employ dynamic graphs to model data.

Although these aspects highlight the software’s potential in provid-
ing a common platform to foster collaboration in the field, it is still 
in its early stages of development, and several areas for improvement 
remain. Whereas it does not purport to be a one-size-fits-all solution 
for temporal networks, it may serve as a starting point that may be 
extended and improved over time, to meet different needs and use 
cases. Several challenges and limitations beyond the need for more 
efficient algorithms and visualization methods remain to be addressed, 
such as the development of more user-friendly graphical user inter-
faces, to facilitate the adoption of these techniques by researchers 
and practitioners from different fields. Further work is needed to fully 
realize the potential of the software and to address these challenges and 
limitations.

1 Publicly available at: https://pypistats.org/packages/networkx-temporal.
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Fig. 3.  Community detection on a temporal graph.  Graphs were generated by SBM with decreasing assortativeness. We display the node ground truths (top) and the 
resulting communities obtained by modularity optimization on the unrolled temporal graph (middle), on the static graph (bottom left), and on each snapshot (bottom right). 
Within-community edges are shown colored. All graphs were rendered using the software. The code to reproduce this example is included in the online software documentation .

5. Conclusion

The need for unified frameworks for temporal graph analysis is 
becoming increasingly important as the field continues to grow, and 
the development of more easy-to-use tools and libraries is crucial to 
facilitate the adoption of its latest advancements. NetworkX-Temporal 
aims to make this goal more achievable, offering a landmark for further 
development and implementation of dynamic graphs in diverse applica-
tions, and is intended as a hub for algorithm implementations targeting 
temporal networks, fostering the development of new methods and 
tools for their analysis. We plan to continue extending the library 
toward the future, support additional data formats and libraries, and 
different temporal metrics introduced to the study of evolving net-
works. Finally, we hope the software will help foster the development 
of new algorithms and tools for the analysis of dynamic graphs, as 
well as facilitate their integration with other fields of research and 
application scenarios.
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