
O

N
s
N
a

b

A

K
N
D
T

1

t
a
t
n
(
m
a
t
c
N
c
m
d

h
R

SoftwareX 31 (2025) 102277

A
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

etworkX-Temporal: Building, manipulating, and analyzing dynamic graph

tructures
elson A.R.A. Passos a,b ,∗, Emanuele Carlini b, Salvatore Trani b
University of Pisa, Pisa, PI, 56127, Italy
National Research Council, Pisa, PI, 56124, Italy

 R T I C L E I N F O

eywords:
etwork science
ynamic graphs
emporal networks

 A B S T R A C T

NetworkX-Temporal is a Python package that extends the popular NetworkX library to dynamic graphs,
enabling the modeling and analysis of time-evolving complex systems. As core features, it provides ways
to generate, slice and visualize graphs as sequences of snapshots, transform or convert between different
representations and formats, and compute temporal metrics and properties. It is designed to be flexible and
easily extensible, suiting a wide range of applications, and may serve as a hub for temporal graph algorithm
implementations. We present its design and implementation, elaborate on its key features, and describe some
use cases to illustrate its capabilities.

Current code version 1.3
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-24-00654
Permanent link to Reproducible Capsule https://pypi.org/project/networkx-temporal/
Legal Code License BSD License
Code versioning system used Git
Software code languages, tools, and services used Python
Compilation requirements, operating environments & dependencies Python ≥ 3.7
Link to developer documentation/manual https://networkx-temporal.readthedocs.io
Support email for questions nelson.reis@phd.unipi.it

. Motivation and significance

Networks — systems of interacting objects — are ubiquitous struc-
ures formed by both natural and artificially-controlled processes, such
s molecules and food webs, or the World Wide Web and transporta-
ion systems, respectively. Graphs, mathematical representations of
etworks where nodes (vertices) take the place of objects and edges
arcs) represent the interactions connecting them, are widely used to
odel such systems, providing a powerful and flexible framework for
nalyzing their functional properties. The study of networks through
he lens of graph theory has gained significant attention in the last
entury, leading to the emergence of a new body of research known as
etwork Science [1], with a history of multidisciplinary contributions
oming from mathematicians, physicists, biologists, sociologists and
ore. It has since provided valuable insights into the structure and
ynamics of networks, with wide-ranging applications for machine

∗ Corresponding author at: University of Pisa, Pisa, PI, 56127, Italy.
E-mail address: nelson.reis@phd.unipi.it (Nelson A.R.A. Passos).

learning, materials science, anomaly detection, molecular prediction,
and many others [2–4].

In real-world networks, interactions between entities are rarely
fixed, but rather undergo continuous changes over time. For instance,
the relationships between individuals in a social network may evolve in
both quantitative and qualitative terms, as new connections are formed
and existing ones are dissolved; the flow of information in a commu-
nication network may vary depending on the time of day or week;
and biological responses to stimuli can alter significantly based on the
endogenous timing systems of different organisms, i.e., their circadian
rhythms. This added complexity, however, poses significant new chal-
lenges, as these systems exhibit intricate and non-trivial patterns that
are not adequately captured using traditional methods. Such systems
are often modeled as dynamic graphs instead, where the network struc-
ture changes over time — allowing for a more accurate representation
ttps://doi.org/10.1016/j.softx.2025.102277
eceived 9 December 2024; Received in revised form 14 May 2025; Accepted 15 July 2025
vailable online 31 August 2025
352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://orcid.org/0000-0003-1869-2976
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00654
https://pypi.org/project/networkx-temporal/
https://networkx-temporal.readthedocs.io
mailto:nelson.reis@phd.unipi.it
mailto:nelson.reis@phd.unipi.it
https://doi.org/10.1016/j.softx.2025.102277
https://doi.org/10.1016/j.softx.2025.102277
http://creativecommons.org/licenses/by/4.0/

Nelson A.R.A. Passos et al. SoftwareX 31 (2025) 102277
of its underlying processes and ultimately providing insights unattain-
able using static graph representations, such as the identification of
temporal patterns and the prediction of future interactions based on
past observed behavior.

Research on dynamic graphs has gained traction in recent years,
although there is still a lack of software covering the full range of
functionalities required for aptly handling time-varying relational data
in an intuitive manner — that is, the creation, manipulation, analysis,
and visualization of dynamic graphs. The presented software aims to
address this gap by providing a comprehensive and easily extensible
set of functionalities for working with temporal networks, leveraging
existing solutions to facilitate its adoption and integrating with other
graph exploration and machine learning libraries. This paper describes
the software’s architecture and design, including its core components;
discusses its impact and potential toward several applications; and
provides examples of usage in simulated scenarios, highlighting its
capabilities and easy of use for researchers and practitioners alike.

2. Software description

NetworkX-Temporal is a programming library for complex network
analysis, specifically designed to handle dynamic graphs. It is built on
top of NetworkX [5], a widely used library for static graph analysis, ex-
tending its functionalities to support time-varying relational data, while
adhering to its API standards and providing a seamless integration with
its data structures and implemented algorithms. The code is written
in Python, leveraging its simplicity and readability, and is available
under the open-source 3-clause BSD license, allowing for its free use,
modification, and redistribution.

2.1. Software components

The software is designed to be modular and extensible, following
the principles of object-oriented programming to ensure a clean and
maintainable codebase, with a clear separation between core function-
alities. Fig. 1 depicts an overview of its architecture and highlights its
main components.

Classes and functions are organized into modules, each responsible
for a specific aspect of the library’s functionality, following a structure
that mimics that of NetworkX: the algorithms module implements
temporal centrality and community measures; classes defines the main
temporal graph classes and their methods; drawing contains func-
tions for visualizing graphs; generators provides functions to create
synthetic datasets; readwrite implements functions to import and ex-
port data; transform provides functions to convert between different
temporal graph representations; typing defines package-specific type
hints; and utils contains miscellaneous functions, for example, that
integrate its data structures with other (external) libraries in the Python
ecosystem. On package import, users are exposed to all of the library’s
functionalities through a single entry point, with the most commonly
used classes and functions available in the top-level namespace.

The software is bundled with a comprehensive documentation to
guide users through the available functionalities, including a set of
step-by-step tutorials showcasing its main features. The documentation
is generated using Sphinx and includes a detailed description of its
implemented classes and functions, with common examples of usage
illustrated through code snippets.

2.2. Software functionalities

The following subsections provide an overview of the main func-
tionalities provided by the software, broadly categorized into four
main areas: building, analyzing, visualizing, and importing/exporting
dynamic graph data.

Building dynamic graphs
Dynamic graphs are implemented by inheriting from and extending

NetworkX’s static graph classes, enabling seamless integration with its
existing functionalities and algorithms. The library offers four primary
classes, as depicted in Fig. 1, which support various graph config-
urations, including directed or undirected edges, as well as single
or multiple pairwise interactions between nodes at each time step
(multiplex graphs). A factory function is also provided to instantiate
any of the four main classes based on the input parameters, and utility
functions are available to convert static graph objects to temporal
graph objects and vice versa, ensuring ease of use and interoperability.
Moreover, synthetic graph datasets, for instance, based on stochastic
blockmodeling [6] can be created using generator functions, enabling
the simulation of networks with diverse temporal dynamics in a con-
trolled manner. Lastly, graph objects built with the library can be
modified through built-in methods in a familiar way, allowing adding,
removing, and altering nodes, edges, and their attributes, adhering to
NetworkX naming conventions to improve workflow compatibility and
ensure a consistent and intuitive interface.

The software supports discrete-time (snapshot-based) and conti-
nuous-time (event-based) representations of temporal graphs, allowing
users to choose the most suitable format for their specific needs. In
discrete-time representations, a temporal graph correspond to a se-
quence of static graphs, i.e., 𝑆 ∶= {𝐺1,… , 𝐺𝑇 ∣ 𝐺 ∶= (𝑉 ,𝐸), 𝑇 ∈ N},
where each object 𝐺𝑡 ∈  is a static graph at a time step 𝑡 ≤ 𝑇 , and
𝑉 and 𝐸 are its set of nodes and edges, respectively. This is the most
common representation for temporal graphs, and may be reduced to
a single multiplex graph with timestamped nodes/edges in case node
attributes do not change over time. The software uses NetworkX’s built-
in data structures to represent the underlying static graphs, allowing for
easy manipulation and analysis of the network’s structure at different
time points or aggregated intervals. Snapshots may be obtained and
merged on demand from a temporal graph object by slicing the data
using the software’s built-in functions, resulting in native NetworkX
subgraph views that reference the original nodes, edges, and their
attributes. This is particularly useful when working with larger datasets
or multiple intervals of interest, allowing for more efficient memory
usage by avoiding data duplication unless explicitly required for further
tasks, e.g., defining dynamic node attributes. The total memory saved
by using native NetworkX subgraph views depends on the number of
snapshots generated and the size of the original graph.

Instead, the continuous-time representation of temporal graphs is
based on the concept of edge-level events, where each event corre-
sponds to a pairwise interaction between nodes at a specific time. The
graph therefore consists of a set of events, i.e., 𝐸 ∶= {𝜀1,… , 𝜀𝑇 ∣ 𝜀 ∶=
(𝑢, 𝑣, 𝑡, 𝛿), 𝑡 ∈ R+}, where each event 𝜀𝑡 ∈  is a pairwise interaction
between nodes 𝑢 and 𝑣 at a time 𝑡, and 𝛿 is an optional integer or
floating point representing an edge addition (1), edge removal (−1),
or the duration of the interaction, respectively. In this case, slicing
the data simply involves discretizing or filtering the events within a
specific interval. This representation therefore supports distinct ways
to store relational data that fits different use cases, possibly leading
to more compact data representations that may be more suitable for
certain algorithms and applications, such as storing relational data
with irregular sampling rates. Known limitations include graphs with
isolated nodes without self-loops and the need to separately store
node-level attributes in one or more dictionaries.

Alternatively, it is possible to generate unrolled (multislice) repre-
sentations of temporal graphs, in which a single data object contains
the original network data, plus additional time-adjacent node copies
and edge couplings linking them. Similar to the snapshot-based repre-
sentation, this is a useful alternative for storing temporal graphs with
dynamic node attributes in a single object, and may be preferred for
temporal metrics and algorithms, e.g., based on directed flows [7]. Fig.
2 provides an illustrative comparison of these representations rendered
by the software, constructed from the same data (see Section 2.3). The
2

Nelson A.R.A. Passos et al. SoftwareX 31 (2025) 102277
Fig. 1. Overview of software structure. The diagram depicts modules (blue), classes (green), and functions (orange). For brevity, only some classes and functions exposed on
package import are shown as examples. Full documentation available online.

Fig. 2. Temporal graph representations. A directed graph with 6 nodes and 8 edges is represented in static (top left), unrolled (top right), and snapshot-based (bottom) forms.
Edges are annotated with a timestamp representing the pairwise interaction time. In the unrolled representation, additional edge couplings linking time-adjacent node copies in
the graph are highlighted. All graphs were created and rendered using the software .

choice of representation is therefore left to the user, who may opt
for the most suitable format to balance computational efficiency and

analysis needs, switching between them at will to perform different
tasks.
3

Nelson A.R.A. Passos et al. SoftwareX 31 (2025) 102277
Analysis of dynamic graphs
The software provides algorithms specifically designed for temporal

networks, allowing their evolving structure to be taken into account
for analysis and exploration tasks. Specifically, it implements node-
level centrality measures adapted for dynamic graphs, such as temporal
closeness and betweenness [8], as well as graph-level metrics, including
degree centralization [9], multislice and longitudinal modularity [10,
11]. By leveraging the temporal information encoded within, these met-
rics can provide a more accurate analysis and a deeper understanding of
the network’s properties, enabling the identification of key nodes that
play a crucial role in shaping its behavior, as well as the discovery of
patterns and trends that may not be apparent otherwise.

As algorithms and metrics may expect a sequence of snapshots
as input, the software enables users to slice temporal graph objects
according to different criteria, thus enabling their fine-grained analysis.
While the default number of snapshots returned when slicing the graph
equals the number of unique timestamps in the data, a quantile-based
cut may be employed to determine the number of snapshots based
on node or edge activity. These methods are particularly useful when
pairwise interactions are not evenly distributed across time, allowing to
enforce a fixed number of intervals or obtaining snapshots of balanced
order or size, depending on whether node-level or edge-level attributes
are used to acquire their interaction times. Alternatively, users can
define a specific number of snapshots by sorting edges, nodes, or their
attributes by their order of appearance in the graph, allowing for a
more flexible and tailored approach to obtaining the desired temporal
representation. The resulting snapshots can be further processed to
extract relevant information, such as the most active nodes and most
frequent interactions, providing valuable insights into their individual
and collective behavior.

In sum, the software provides a growing set of functions for the
analysis of temporal networks, enabling users to extract relevant infor-
mation and gain insights into their evolving structure and dynamics.
Furthermore, the integration with the NetworkX library allows for
the application of its implemented algorithms on a snapshot-level
basis, allowing to leverage a wide range of established graph analysis
techniques aimed for static graphs.

Visualization of dynamic graphs
Drawing graphs is supported by the software through a set of

functions to create static or dynamic visualizations, currently based
on the Matplotlib [12] library. Functions are provided to create static
visualizations, with the possibility of customizing the node and edge
colors, sizes, labels, and other attributes. Node positions may be set
manually or computed automatically using layout algorithms available
in NetworkX, while further customization is made possible by Mat-
plotlib itself, such as using color maps and adding legends to figures,
among others. The resulting plots may be saved as separate image
files, displayed interactively, or processed by an external software to
showcase the network’s temporal evolution in a visually appealing way.

As with other presented functionalities, the drawing module is
designed to be easily extensible and customizable, and allows users
to tailor the generated outputs to their specific needs. External visu-
alization libraries may also be used to create more advanced plots,
such as 3-dimensional renderings, or to integrate the temporal graph
with other data sources, such as geographical maps. Large-scale net-
works may be processed by aggregating nodes and edges in different
intervals, filtering the data to display only a subset of the interactions,
thus reducing the complexity of the visualization and making it more
interpretable. Lastly, exporting the temporal graphs to disk allows
for the use of external graph exploration tools aimed at exploratory
data analysis, which enable interactively visualizing the data using
different tools designed for this specific purpose, such as Gephi [13]
and Cytoscape [14].

Table 1
 Available conversion functions to other libraries, as of the current version.
 Library Parameter (Package) Calls (Function)
 DeepGraphLibrary ‘‘dgl’’ convert.to_dgl
 DyNetX ‘‘dynetx’’ convert.to_dynetx
 graph-tool ‘‘graph_tool’’ convert.to_graph_tool
 igraph ‘‘igraph’’ convert.to_igraph
 NetworKit ‘‘networkit’’ convert.to_networkit
 PyTorchGeometric ‘‘torch_geometric’’ convert.to_torch_geometric
 SNAP ‘‘snap’’ convert.to_snap
 StellarGraph ‘‘stellargraph’’ convert.to_stellargraph
 Teneto ‘‘teneto’’ convert.to_teneto

Converting and exporting dynamic graphs
Temporal graphs built with the software may be exported to disk

using its built-in functions, which support the same formats com-
patible with the version of NetworkX installed in the environment
(CSV, GraphML, GEXF, JSON and others). The same formats are also
supported for importing data from disk, allowing users to easily load
existing datasets into the software.

To allow preserving dynamically-defined node and edge attributes,
the option to save temporal graphs as a single compressed file is also
provided, with each created snapshot stored as a separate object within.
Supported compression algorithms are the same as those available in
the standard zipfile module in Python (ZIP, BZIP2, LZMA). The level
of compression may be adjusted by the user, and the resulting file may
also be easily loaded back into the software, preserving all information
such as node features, edge weights, and graph attributes, as well
as aggregated intervals — allowing to easily store and transfer data
without losing any information or requiring additional processing steps
to obtain the snapshots. Alternatively, uncompressing the file allows
to further process the data using external tools or libraries. The use
of standardized file formats ensures software compatibility with other
graph analysis tools, and allows sharing data between different research
groups and applications without the need for custom data formats or
conversion scripts.

The software facilitates seamless integration with other prominent
graph libraries in the Python ecosystem, including DyNetX [15], graph-
tool [16], igraph [17], NetworKit [18] and others, as shown in Table 1.
This enables users to leverage their unique strengths and capabilities,
offering a convenient way to harness their advanced algorithms and
data structures, which substantially differ among them — for example,
Teneto [19] is a library tailored for temporal network analysis, while
SNAP [20] is a general-purpose solution for efficient manipulation
of large-scale networks. Machine learning research may also benefit
from this integration, allowing to convert data to the formats used
by, for example, Deep Graph Library [21], PyTorch Geometric [22],
and StellarGraph [23] — libraries widely used for graph representation
learning and deep learning tasks, such as node classification and link
prediction. A top-level function is provided to convert temporal graphs
to these formats, where the received parameter defines the target li-
brary (see Section 2.3 for an example). To reduce package dependencies
and reduce loading time, the target library is imported only when the
conversion function is called.

The software may therefore be used to preprocess data for diverse
tasks, ranging from exploratory analyses to machine learning applica-
tions. Ultimately, the software’s interoperability with other frameworks
enhances its versatility and expands its potential applications to fit a
variety of use cases.

2.3. Sample code snippet

The following is a quick example of the package in action, covering
its basic functionalities: building, slicing, visualizing and converting
temporal graphs.
4

https://www.dgl.ai
https://dynetx.readthedocs.io
https://graph-tool.skewed.de
https://igraph.org/python
https://networkit.github.io
https://pytorch-geometric.readthedocs.io
https://snap.stanford.edu
https://stellargraph.readthedocs.io
https://teneto.readthedocs.io

Nelson A.R.A. Passos et al.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

1

SoftwareX 31 (2025) 102277
import networkx_temporal as tx

TG = tx.TemporalDiGraph()

TG.add_edge("a", "b", time=0)
TG.add_edge("c", "b", time=1)
TG.add_edge("d", "c", time=2)
TG.add_edge("d", "e", time=2)
TG.add_edge("a", "c", time=2)
TG.add_edge("f", "e", time=3)
TG.add_edge("f", "a", time=3)
TG.add_edge("f", "b", time=3)

TG = TG.slice(attr="time")

tx.draw(TG, layout="kamada_kawai", figsize=(8, 2))

<Figure size 800x200 with 4 Axes>

The code creates a directed temporal graph with 6 nodes and 8
timestamped edges, which is then sliced into snapshots based on unique
timestamps. Snapshots are visualized using a predefined layout algo-
rithm [24] and Matplotlib as the default backend (see Fig. 2, bottom
row for the resulting plot). Graph objects can be further processed using
built-in methods and functions — for example, converting to a different
format or representation both take a single line of code using methods
available from the instantiated object.

TG.convert(to="torch_geometric")

[Data(edge_index=[2, 1], time=[1], num_nodes=2),
 ...,
 Data(edge_index=[2, 3], time=[3], num_nodes=4)]

TG.to_events(delta="int")

[(’a’, ’b’, 0, 1),
 ...,
 (’d’, ’e’, 3, -1)]

These snippets demonstrate the ease of use in building, visualizing,
and processing temporal graphs using the presented software. More
advanced examples and step-by-step tutorials are available in the soft-
ware’s documentation, providing a useful guide to its functionalities to
help users get started.

3. Illustrative example

We present a simple example to illustrate the software’s capabil-
ities and demonstrate its potential for analyzing temporal networks.
Community detection is a fundamental task in Network Science [25],
and the following scenario showcases the benefits of considering a net-
work’s temporal dynamics for community detection tasks, in contrast
to static graph representations.

As a first step, we employ NetworkX’s built-in function to generate a
toy network with a simple Stochastic Block Model (SBM) [6], consisting
of 4 snapshots with 5 clusters of 5 nodes each. The network evolution
consists of an increasing number of connections among nodes in dif-
ferent communities — resulting in graphs with the same community
structure, but decreasing assortativity. Fig. 3 displays the generated
graphs, with the ground truths displayed at the top. On each plot, we
highlight node memberships and within-community edges in different
colors, keeping node positions fixed over time to allow visualizing the
change in their connections as the size of the graph increases. Note that,
in this example, nodes do not change their memberships over time.

Next, we attempt to retrieve the true communities using a com-
munity detection algorithm. For simplicity, we choose the Leiden
method [26] and employ modularity optimization as a quality function
— one of the most widely employed methods for this task [27].

Considering the network as a single static graph, disregarding its
temporal information, results in the algorithm failing to retrieve the
true communities, possibly due to the amount of noise and decreasing
assortativity introduced by the temporal evolution. Fig. 3 (bottom left)
shows the retrieved communities by the algorithm.

We then run the same algorithm on each of the static graph snapshots
generated by SBM. While the algorithm correctly retrieves the clusters
on the first graph, it fails to do so on the subsequent graphs, as shown
in Fig. 3 (bottom right). Community indices are also not fixed across
snapshots, introducing additional challenges to track communities over
time, even in case the ground truths for each snapshot were successfully
retrieved by employing this approach.

Lastly, we run the same algorithm on the temporal graph, adding
edge couplings between time-adjacent node copies, resulting in a mul-
tislice [10] graph with the same order and size as the unrolled repre-
sentation shown in Fig. 2 (top right). Although modularity optimization
expects assortative community structures, this simple procedure al-
lowed the algorithm to correctly retrieve the ground truths in all
snapshots, while maintaining community indices fixed over time. The
retrieved communities for each snapshot are displayed in Fig. 3 (middle
row), where we can see that the algorithm successfully identifies the
true communities, in spite of their decreasing assortativity.

This very simple example demonstrates how considering a network’s
temporal dimension can improve community detection, which may
likewise be crucial for various objectives involving modeling and an-
alyzing dynamic graphs. The same principle applies to many other
tasks, where the network’s evolution can provide valuable insights into
its structure and behavior. The software therefore provides a flexible
framework for working with dynamic graphs, which may potentially
benefit a variety of research areas and applications.

4. Impact and limitations

The software is expected to have a positive impact for studies
taking advantage of dynamic graphs, as it provides a unified framework
based on a widely used library for complex network analysis, extending
its functionalities to support time-varying relational data and well
integrating with other solutions for graph exploration and machine
learning. Its user-friendly API make it accessible to researchers and
practitioners from various fields, streamlining their workflow by pro-
viding a familiar interface that does not require extensive programming
knowledge or expertise to be employed.

Its adoption and interest by the community is reflected in its down-
load statistics1, with approximately 2,000 downloads from the Python
Package Index (PyPI) in the month of its first stable release (September
2024). Researchers from both academia and industry have reported
using the software in their work, and have provided positive feedback
on their experience. It has ben successfully used to study commu-
nication patterns in social networks, structure musical environments,
analyze production systems, and preprocess data for machine learning
tasks [28–30]. Other applications this software may benefit include
studies in epidemiology, traffic flow, and systemic risk estimation,
along with others that employ dynamic graphs to model data.

Although these aspects highlight the software’s potential in provid-
ing a common platform to foster collaboration in the field, it is still
in its early stages of development, and several areas for improvement
remain. Whereas it does not purport to be a one-size-fits-all solution
for temporal networks, it may serve as a starting point that may be
extended and improved over time, to meet different needs and use
cases. Several challenges and limitations beyond the need for more
efficient algorithms and visualization methods remain to be addressed,
such as the development of more user-friendly graphical user inter-
faces, to facilitate the adoption of these techniques by researchers
and practitioners from different fields. Further work is needed to fully
realize the potential of the software and to address these challenges and
limitations.

1 Publicly available at: https://pypistats.org/packages/networkx-temporal.
5

https://pypistats.org/packages/networkx-temporal

Nelson A.R.A. Passos et al. SoftwareX 31 (2025) 102277
Fig. 3. Community detection on a temporal graph. Graphs were generated by SBM with decreasing assortativeness. We display the node ground truths (top) and the
resulting communities obtained by modularity optimization on the unrolled temporal graph (middle), on the static graph (bottom left), and on each snapshot (bottom right).
Within-community edges are shown colored. All graphs were rendered using the software. The code to reproduce this example is included in the online software documentation .

5. Conclusion

The need for unified frameworks for temporal graph analysis is
becoming increasingly important as the field continues to grow, and
the development of more easy-to-use tools and libraries is crucial to
facilitate the adoption of its latest advancements. NetworkX-Temporal
aims to make this goal more achievable, offering a landmark for further
development and implementation of dynamic graphs in diverse applica-
tions, and is intended as a hub for algorithm implementations targeting
temporal networks, fostering the development of new methods and
tools for their analysis. We plan to continue extending the library
toward the future, support additional data formats and libraries, and
different temporal metrics introduced to the study of evolving net-
works. Finally, we hope the software will help foster the development
of new algorithms and tools for the analysis of dynamic graphs, as
well as facilitate their integration with other fields of research and
application scenarios.

CRediT authorship contribution statement

Nelson A.R.A. Passos: Software. Emanuele Carlini: Software. Sal-
vatore Trani: Software.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Newman M. Networks. second ed. Oxford University Press; 2018.
[2] Reiser P, Neubert M, Eberhard A, Torresi L, Zhou C, Shao C, et al. Graph

neural networks for materials science and chemistry. Commun Mater 2022;3(1).
http://dx.doi.org/10.1038/s43246-022-00315-6.

[3] Pazho AD, Noghre GA, Purkayastha AA, Vempati J, Martin O, Tabkhi H. A
survey of graph-based deep learning for anomaly detection in distributed sys-
tems. IEEE Trans Knowl Data Eng 2024;36(01):1–20. http://dx.doi.org/10.1109/
TKDE.2023.3282898, URL https://doi.ieeecomputersociety.org/10.1109/TKDE.
2023.3282898.

[4] Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing
for quantum chemistry. In: 34th international conference on machine learning -
volume 70. JMLR.org; 2017, p. 1263–72.

[5] Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics,
and function using NetworkX. In: Varoquaux G, Vaught T, Millman J, editors.
Proceedings of the 7th python in science conference. Pasadena, CA USA, 2008,
p. 11–5, URL https://conference.scipy.org/proceedings/scipy2008/paper_2/.

[6] Holland PW, Laskey KB, Leinhardt S. Stochastic blockmodels: First steps. Soc
Netw 1983;5(2):109–37. http://dx.doi.org/10.1016/0378-8733(83)90021-7, URL
https://www.sciencedirect.com/science/article/pii/0378873383900217.

[7] Kim H, Anderson R. Temporal node centrality in complex networks. Phys Rev E
2012;85(2). http://dx.doi.org/10.1103/physreve.85.026107.

[8] Kim H, Anderson R. Temporal node centrality in complex networks. Phys Rev E
2012;85(2). http://dx.doi.org/10.1103/physreve.85.026107.

[9] Freeman LC. Centrality in social networks conceptual clarification. Soc Netw
1978;1(3):215–39. http://dx.doi.org/10.1016/0378-8733(78)90021-7.

[10] Mucha PJ, Richardson T, Macon K, Porter MA, Onnela J-P. Community
structure in time-dependent, multiscale, and multiplex networks. Science
2010;328(5980):876–8. http://dx.doi.org/10.1126/science.1184819.

[11] Brabant V, Asgari Y, Borgnat P, Bonifati A, Cazabet R. Longitudinal modularity,
a modularity for link streams. EPJ Data Sci 2025;14(1). http://dx.doi.org/10.
1140/epjds/s13688-025-00529-x.

[12] Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng
2007;9(3):90–5. http://dx.doi.org/10.1109/mcse.2007.55.

[13] Bastian M, Heymann S, Jacomy M. Gephi: An open source software for exploring
and manipulating networks. 2009, URL http://www.aaai.org/ocs/index.php/
ICWSM/09/paper/view/154.
6

http://refhub.elsevier.com/S2352-7110(25)00244-4/sb1
http://dx.doi.org/10.1038/s43246-022-00315-6
http://dx.doi.org/10.1109/TKDE.2023.3282898
http://dx.doi.org/10.1109/TKDE.2023.3282898
http://dx.doi.org/10.1109/TKDE.2023.3282898
https://doi.ieeecomputersociety.org/10.1109/TKDE.2023.3282898
https://doi.ieeecomputersociety.org/10.1109/TKDE.2023.3282898
https://doi.ieeecomputersociety.org/10.1109/TKDE.2023.3282898
http://refhub.elsevier.com/S2352-7110(25)00244-4/sb4
http://refhub.elsevier.com/S2352-7110(25)00244-4/sb4
http://refhub.elsevier.com/S2352-7110(25)00244-4/sb4
http://refhub.elsevier.com/S2352-7110(25)00244-4/sb4
http://refhub.elsevier.com/S2352-7110(25)00244-4/sb4
https://conference.scipy.org/proceedings/scipy2008/paper_2/
http://dx.doi.org/10.1016/0378-8733(83)90021-7
https://www.sciencedirect.com/science/article/pii/0378873383900217
http://dx.doi.org/10.1103/physreve.85.026107
http://dx.doi.org/10.1103/physreve.85.026107
http://dx.doi.org/10.1016/0378-8733(78)90021-7
http://dx.doi.org/10.1126/science.1184819
http://dx.doi.org/10.1140/epjds/s13688-025-00529-x
http://dx.doi.org/10.1140/epjds/s13688-025-00529-x
http://dx.doi.org/10.1140/epjds/s13688-025-00529-x
http://dx.doi.org/10.1109/mcse.2007.55
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

Nelson A.R.A. Passos et al. SoftwareX 31 (2025) 102277
[14] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.
Cytoscape: A software environment for integrated models of biomolecular
interaction networks. Genome Res 2003;13(11):2498–504. http://dx.doi.org/10.
1101/gr.1239303.

[15] Rossetti G, Bot P, Hoeven ET, Norman U, Jorquera D, Dormán H, et
al. GiulioRossetti/dynetx: v0.3.2. Zenodo; 2023, http://dx.doi.org/10.5281/
ZENODO.3953118, URL https://zenodo.org/record/3953118.

[16] Peixoto TP. The graph-tool python library. figshare; 2017, http://dx.doi.org/10.
6084/M9.FIGSHARE.1164194, URL https://figshare.com/articles/dataset/graph_
tool/1164194.

[17] Csárdi G, Nepusz T, Horvát S, Traag V, Zanini F, Noom D. igraph. Zen-
odo; 2024, http://dx.doi.org/10.5281/ZENODO.3630268, URL https://zenodo.
org/doi/10.5281/zenodo.3630268.

[18] Staudt CL, Sazonovs A, Meyerhenke H. NetworKit: A tool suite for large-scale
complex network analysis. 2014, http://dx.doi.org/10.48550/ARXIV.1403.3005,
URL https://arxiv.org/abs/1403.3005.

[19] Thompson WH, granitz, Harlalka V, lcandeago. wiheto/teneto: 0.5.0. Zenodo;
2020, http://dx.doi.org/10.5281/zenodo.3626827.

[20] Leskovec J, Sosič R. SNAP: A general-purpose network analysis and graph-mining
library. ACM Trans Intell Syst Technol (TIST) 2016;8(1):1.

[21] Wang M, Zheng D, Ye Z, Gan Q, Li M, Song X, et al. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. 2019, http://dx.
doi.org/10.48550/ARXIV.1909.01315, URL https://arxiv.org/abs/1909.01315.

[22] Fey M, Lenssen JE. Fast graph representation learning with PyTorch geo-
metric. 2019, http://dx.doi.org/10.48550/ARXIV.1903.02428, URL https://arxiv.
org/abs/1903.02428.

[23] Data61 C. StellarGraph machine learning library. 2018, https://github.com/
stellargraph/stellargraph.

[24] Kamada T, Kawai S. An algorithm for drawing general undirected graphs. Inform
Process Lett 1989;31(1):7–15. http://dx.doi.org/10.1016/0020-0190(89)90102-
6.

[25] Fortunato S. Community detection in graphs. Phys Rep 2010;486(3–5):75–174.
http://dx.doi.org/10.1016/j.physrep.2009.11.002.

[26] Traag VA, Waltman L, van Eck NJ. From louvain to leiden: guaranteeing
well-connected community. Sci Rep 2019;9(1):5233. http://dx.doi.org/10.1038/
s41598-019-41695-z.

[27] Peixoto TP. Descriptive vs. Inferential community detection in networks: Pitfalls,
myths and half-truths. In: Elements in the structure and dynamics of com-
plex networks, Cambridge University Press; 2023, http://dx.doi.org/10.1017/
9781009118897.

[28] Passos NARA, Carlini E, Trani S. Deep community detection in attributed
temporal graphs: Experimental evaluation of current approaches. In: Proceedings
of the 3rd gNNet workshop on graph neural networking workshop. New York,
NY, USA: Association for Computing Machinery; 2024, p. 1–6. http://dx.doi.org/
10.1145/3694811.3697822.

[29] Passos NARA, Carlini E, Trani S. PubMed-Temporal: A dynamic graph dataset
with node-level features. Zenodo; 2024, http://dx.doi.org/10.5281/zenodo.
13932076.

[30] van Merode F, Boersma H, Tournois F, Winasti W, Reis de Almeida Passos NA,
Ham Avd. Using entropy metrics to analyze information processing within
production systems: The role of organizational constraints. Logistics 2025;9(2).
http://dx.doi.org/10.3390/logistics9020046, URL https://www.mdpi.com/2305-
6290/9/2/46.
7

http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.5281/ZENODO.3953118
http://dx.doi.org/10.5281/ZENODO.3953118
http://dx.doi.org/10.5281/ZENODO.3953118
https://zenodo.org/record/3953118
http://dx.doi.org/10.6084/M9.FIGSHARE.1164194
http://dx.doi.org/10.6084/M9.FIGSHARE.1164194
http://dx.doi.org/10.6084/M9.FIGSHARE.1164194
https://figshare.com/articles/dataset/graph_tool/1164194
https://figshare.com/articles/dataset/graph_tool/1164194
https://figshare.com/articles/dataset/graph_tool/1164194
http://dx.doi.org/10.5281/ZENODO.3630268
https://zenodo.org/doi/10.5281/zenodo.3630268
https://zenodo.org/doi/10.5281/zenodo.3630268
https://zenodo.org/doi/10.5281/zenodo.3630268
http://dx.doi.org/10.48550/ARXIV.1403.3005
https://arxiv.org/abs/1403.3005
http://dx.doi.org/10.5281/zenodo.3626827
http://refhub.elsevier.com/S2352-7110(25)00244-4/sb20
http://refhub.elsevier.com/S2352-7110(25)00244-4/sb20
http://refhub.elsevier.com/S2352-7110(25)00244-4/sb20
http://dx.doi.org/10.48550/ARXIV.1909.01315
http://dx.doi.org/10.48550/ARXIV.1909.01315
http://dx.doi.org/10.48550/ARXIV.1909.01315
https://arxiv.org/abs/1909.01315
http://dx.doi.org/10.48550/ARXIV.1903.02428
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428
https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph
http://dx.doi.org/10.1016/0020-0190(89)90102-6
http://dx.doi.org/10.1016/0020-0190(89)90102-6
http://dx.doi.org/10.1016/0020-0190(89)90102-6
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1038/s41598-019-41695-z
http://dx.doi.org/10.1038/s41598-019-41695-z
http://dx.doi.org/10.1038/s41598-019-41695-z
http://dx.doi.org/10.1017/9781009118897
http://dx.doi.org/10.1017/9781009118897
http://dx.doi.org/10.1017/9781009118897
http://dx.doi.org/10.1145/3694811.3697822
http://dx.doi.org/10.1145/3694811.3697822
http://dx.doi.org/10.1145/3694811.3697822
http://dx.doi.org/10.5281/zenodo.13932076
http://dx.doi.org/10.5281/zenodo.13932076
http://dx.doi.org/10.5281/zenodo.13932076
http://dx.doi.org/10.3390/logistics9020046
https://www.mdpi.com/2305-6290/9/2/46
https://www.mdpi.com/2305-6290/9/2/46
https://www.mdpi.com/2305-6290/9/2/46

	NetworkX-Temporal: Building, manipulating, and analyzing dynamic graph structures
	Motivation and significance
	Software description
	Software components
	Software functionalities
	Building dynamic graphs
	Analysis of dynamic graphs
	Visualization of dynamic graphs
	Converting and exporting dynamic graphs

	Sample code snippet

	Illustrative example
	Impact and limitations
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

