
We first converted the originally static network composed of 19 
171 nodes (papers) and 44 335 edges (citations) to distinct 
snapshot-based temporal graphs, balancing (b) the number of 
nodes or edges in each time slice (t). Afterwards, the graph was 
flattened and edge couplings connecting temporal nodes were 
added, resulting in a a unified temporal graph that encodes the 
temporal information in the topology of a statically defined graph.

In spite of the fixed attribute feature sets of nodes over time, the 
results (Tab. 1) show minor but consistent improvements in the 
metrics used for evaluating the unified temporal graph 
configurations, with the same seeds and set of hyperparameters.

Our next steps are in the direction of implementing and 
experimenting with distinct model architectures for learning on 
dynamic graphs, as well as comparing against time-agnostic 
models for clustering with static and augmented graph data sets.

Our preliminary tests revealed that simply introducing the 
temporal dimension through data augmentation techniques 
on a structural level slightly improved prediction on an existing 
time-agnostic GNN model trained on the PubMed dataset.

GNNs are models that perform feature representation learning 
on data represented in non-euclidean domains, such as network 
graphs. They rely on a message-passing paradigm with 
permutation invariant or permutation equivariant functions to 
aggregate the neighborhood' information of nodes and/or edges. 

Their main strength lies in considering both the topological 
structure of a graph and the attribute features of its high-order 
(n-hop) neighbors, which purported them to the state of the art in 
many node-, edge-, and (sub)graph-level prediction tasks (Fig. 2).

Meanwhile, (Spatio-)Temporal GNNs integrate mechanisms 
such as Gated Recorrent Units and Long-Short Term Memory, 
extending such a strength to learning on dynamic graph signals.

Identifying mesoscale patterns in large graphs allows the study 
of increasingly complex networks, further the understanding of 
their dynamics. However, even though the task of community 
detection has been a thriving research topic for decades, most of 
the introduced methods focuses on the issue of static graphs, 
while most real-world networks are instead temporally evolving.

The task of detecting mesoscale structures on dynamic 
attributed graphs (Fig. 1) is therefore still an underexplored and 
compelling topic of research, which offers a promising opportunity 
to improve on the state of the art of community detection. Our 
goal is to tackle it by introducing a novel task-oriented Graph 
Neural Network (GNN) for clustering spatio-temporal signals.
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Fig. 1. A temporal graph depicted in three snapshots.
Dotted lines represent edge couplings among temporal nodes.

Fig. 2. GNN task levels. Leskovec et al., 2021.

Tab. 1. Results obtained from an average of 20 runs using a 2-layer GAT 
(Veličković et al., 2018) with a self-supervised DAEGC (Wang et al., 2019) 

autoencoder, with one epoch for pretrain and 500 epochs for train.


