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Abstract: Background: The literature on measuring the complexity of production systems
employs the graph and information theory. This study analyzes these systems and their
coordination under varying states of control, with a focus on the probability of unfavorable
events and their temporal characteristics. Methods: Coordination systems are represented
as temporal networks, using entropy and node influence metrics. Two case studies are
presented: a factory operating under the principles of the Toyota Production System (TPS)
with adjacent (local) coordination and andon (global) coordination and a university obstet-
rics clinic with only adjacent (local) coordination. Results: Adjacent coordination leads to
zero entropy in 38.40% of all situations in the TPS example, contrasted to 76.62% in the
same system with andon coordination. Degree centrality of nodes outside of zero-entropy
situations exhibits higher average and maximum values in andon coordination networks,
compared to those with adjacent coordination in TPS. Entropy values in the university
obstetric clinic range from 0.92 to 2.23, average degrees vary between 3 and 4.08, and maxi-
mum degrees range from 7 to 9. Conclusions: Coordination systems modeled as temporal
networks capture the evolving nature of centralizing and decentralizing coordination in
production systems.

Keywords: production systems; supply chain; information processing; temporal network;
Toyota Production System; Takt; obstetrics; entropy; complexity

1. Introduction

Research on assessing the complexity of production systems, including supply chain
systems, using entropy measures has been ongoing since the 1980s. A key metric in
this field is graph entropy, which quantifies the information processing structure of a
production system and serves as an “effective measure of complexity” [1]. In this context,
complexity can be attributed to the physical network of factories, distribution centers,
warehouses, and outlets—referred to as nodes—connected through links that represent
movements and transport—referred to as edges. In modern, highly integrated supply
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chain networks, such as multi-stage assembly systems and multi-echelon supply chains,
entropy measures are essential for describing complexity propagation [2]. For instance,
in mixed-model assembly systems, manufacturing complexity significantly influences
complexity propagation, making the consideration of “system configuration, task-to-station
assignment, and assembly sequences” essential for their analysis [1].

As manufacturing and supply chains become increasingly integrated, they are hereby
collectively referred to as “production systems”. Assessing the probability that a produc-
tion system remains in control, despite uncertainties in its coordination mechanisms, is
crucial [3]. To achieve this, the coordination system must possess requisite variety to adapt
to environmental changes. Furthermore, when disruptions occur, the production system
must exhibit resilience to restore its original state [4-8]. When a production system is
modeled as a network, the nodes represent locations where products are manufactured,
stored, or sold, while the edges signify movements, such as transportation, between these
nodes. In this context it does not fully capture the complexity of a supply chain network by
itself, even though Shannon entropy serves as a robust measure of the structural properties
of the physical network. Additional metrics, such as the number of edges and the distance
between nodes, are often employed to provide a more comprehensive analysis. Certain
nodes may be critical to the supply chain’s functionality, thereby requiring a thorough
evaluation of their complexity, encompassing node influence metrics and the uncertainty as-
sociated with their activation, to ensure a comprehensive understanding of their role within
the supply chain. Measuring the entropy of the coordination network is proposed here as
a complementary metric to the existing measures of the physical structure’s complexity
and stability.

A crucial distinction must be made between the coordination network and the physical
network that it manages: the former can be understood as a set of constraints imposed on
the latter. Note that although the two production systems may exhibit identical Shannon
entropy values for their physical networks, they might differ significantly in the entropy of
their coordination systems. The problem statement therefore is: How can Shannon entropy
be calculated and utilized to measure the complexity of coordination in production systems? To
answer this, a methodology for calculating the Shannon entropy of coordination networks
is introduced and illustrated by two contrasting examples: a factory operating under the
Toyota Production System (TPS) principles, characterized by low levels of uncertainty due
to optimization, and an obstetrics clinic, which operates with high levels of uncertainty,
necessitating a more flexible and complex coordination system. These two systems were
selected for their contrasting characteristics, as these are expected to have a profound
impact on their quantified entropy and additional complexity metrics. The obstetrics clinic
is subject to three key types of uncertainties that are either absent or noticeably different in
TPS: (1) in the clinic new patients arrive unpredictably, in contrast to TPS, where the arrival
of orders at workstations is carefully planned; (2) the procedures required for admitted
patients are not known in advance in the clinic, whereas in TPS, the processes for handling
orders are well-defined; and (3) the length of stay for admitted patients varies, even when
the procedure is known, while in TPS, order processing times are standardized or nearly
precisely estimated. These differences highlight the varying coordination demands and
complexities inherent in the two systems.

The two systems are analyzed through the lens of how constraints related to the
coordination network influence the reduction in coordination complexity and the entropy
of production systems. Both systems are modeled as graphs, and the effects of these
constraints are evaluated by measuring the resulting complexity reduction. Notably, the
entropy values of coordination networks can even differ among otherwise identical fac-
tories and production systems. Such variations may be intentional, because of deliberate
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design choices, or unintentional, occurring when the system operates beyond its designed
parameters (i.e., in an open-loop state). By studying the constraints imposed on coordina-
tion networks, distinctions between entropies stemming from intentional design and those
arising from out-of-control conditions can be made. The proposed method analyzes the
structure of coordination networks only, therefore dismissing any additional information
on their contents. Table 1 provides an overview of the study and the present article.

Table 1. Topics addressed per section.

Section Topics Addressed

How can coordination be modeled as networks?
To what extent can entropy of these networks
measure the coordination complexity?

2. Coordination and network
entropy

What types of coordination complexity do occur?
Where do these occur in coordination networks?
How can coordination networks be simulated?
What are the metrics used to evaluate the
characteristics of coordination networks?

3. Graph theory to describe
network and situation entropy

Introduction of concepts of Takttime, adjacent
and andon coordination and temporal
coordination networks

Comparison of coordination of Toyota
Production System (ITPS) with University
Obstetric Clinic

Simulation of scenarios for both examples

4. Two examples of coordination
systems

What are the differences between the
coordination networks of TPS and the University
Obstetric Clinic?

5. Discussion What do these differences mean?
What is the design complexity of the TPS and the
University Obstetric Clinic?
Limitation of this study

What is the insight into the complexity of

. Conclusion P
6. Conclusions coordination in both examples?

2. Coordination and Network Entropy

The contrasting examples studied can be placed in a typology of coordination systems,
as presented in Appendix A. The university obstetric clinic is characterized by the absence
of feedback loops: workflows from upstream to downstream, independently of the status
of the latter, corresponding to coordination system type (a) in Appendix A. In contrast,
Toyota Production Systems operate with both local and global feedback loops, which
facilitate release and work-in-progress coordination. These correspond with coordination
system types (f) and (g) in the typology presented in Appendix A. In systems with multiple
production lines, a synchronization of release and work-in-progress occurs (coordination
type (g) of the typology in Appendix A).

A coordination system can be viewed as the outcome of arbitrary communication [9],
as cited by [10], and may be appropriately represented as a network. A network is math-
ematically described as a graph consisting of nodes (vertices) and edges (links), where
an edge connects two nodes if they are related by a specific criterion [11]. Shannon’s
entropy formulas can then be applied to quantify the information content within the co-
ordination system. Since the mid-1980s, entropy measures have been used to analyze
production systems, initially focusing on the flexibility of manufacturing systems. The
first study on flexibility in this context, to the best of available knowledge, was conducted
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by Vinod Kumar [12]. The application of entropy measures to analyze the complexity and
information-processing capacity of supply networks emerged later, with an early exam-
ple being the work of Battini et al. [13], followed by numerous subsequent studies. The
COVID-19 pandemic has recently drawn renewed attention to the risks of supply chain
disruption, prompting studies to assess the complexity of supply chains using entropy
measures [8] and optimize production system resilience [5], e.g., by determining their
optimal amount of redundancy [7].

Over time, the fields of manufacturing and supply chain management have become
increasingly integrated, particularly in industries where supply chains are tightly coupled
with just-in-time manufacturing processes. In this context, graph entropy metrics have
gained attention, due to their ability to distinguish between different types of networks
from a structural perspective [14], i.e., by analyzing both individual nodes and the overall
network’s structural properties. To fully quantify the entropy of a production system,
it is essential to describe both aspects, as greater diversity among the nodes increases
the amount of information required to describe the network [15]. This diversity can be
captured, for example, by the nodes’ degrees, i.e., the sum of incoming and outgoing edges
for each node in a directed graph.

A coordination system, therefore, arises from the network properties of the production
system, combined with the emerging constraints on the set of possible coordination net-
works. Morzy argues that entropy metrics should reflect the properties of this generative
process [16], or the effective complexity, as defined in the algorithmic information theory
by Gregory Chaitin [17]. The effective complexity is quantified by the length of the most
concise description of a system [18] (p. 228), [19]. The representation of a network also
depends on its level of coarse-graining and aggregation, which can be arbitrary [16]. This
implies that, when comparing various production systems, coordination networks must
be generated with consistent coarse graining applied throughout. The process structure
of a production or service network, along with the constraints that govern its possible
states, can be viewed as a program (in the sense of algorithmic information theory) that
generates a coordination network. Algorithmic complexity is low when the entropy of the
coordination network is low. Conversely, when entropy is high, the algorithmic complexity
can be either high or low. As Zenil et al. [20] note, high entropy may overestimate the
randomness of a system, while low entropy may underestimate the randomness at the
node level, and consequently, the overall randomness of the system. This suggests that in a
coordination system with low entropy, certain nodes may become overloaded.

A recent overview of the use of entropy regarding production systems [21] shows
that especially the Shannon entropy has been used to measure the complexity of produc-
tion systems, due to its simplicity, generality, and strong theoretical foundations. Other
entropy measures, such as an analogy of Boltzmann-Gibbs, are sometimes used as well.
A distinction should be made in what is exactly measured, as these measures emphasize
distinct aspects of complexity [21]. Shannon entropy measures information uncertainty and
diversity in a system [22]. The focus is on task assignments and workflow changes, such as
the diversity of product types or process variations. Boltzmann—Gibbs entropy originates
from statistical mechanics and measures the number of microstates corresponding to a
macrostate [22]. The focus is on the number of ways that the tasks/resources can be set up
to establish a stable system. Considering the above, Shannon entropy is used in this study.

When analyzing the coordination complexity of production systems, Shannon entropy
is frequently applied to quantify task unpredictability and coordination diversity. The
total complexity of the production system is determined by the complexity of its structure
(including the capability to deal with product variants) and the complexity which results
from process uncertainty [23]. The measures of both types of complexity together lack
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consistency [23]. This problem is related to what Martignago et al. observe in their overview
of research and applications of entropy measurement in supply networks. They observe
that indexes (i.e., entropy measures) found in the literature compare alternative graphs and
do not have much value when only a single graph is considered [21].

3. Graph Theory to Describe Network and Situation Entropy
3.1. Shannon Entropy

The states of production and service systems change constantly due to internal and
external inputs. Managing these changes, whether desired or undesired, is at the core of
coordination. This study focuses on the application of Shannon entropy [24], in which the
uncertainty of outcomes is represented by a discrete random variable X. Shannon’s infor-
mation entropy for n possible outcomes, with 7 outcomes (x1, xp, . .. x;), can be calculated
by Equation (1):

H(X) = =} iy P(xi)log,P(x;) (1)

The information available in such a system, e.g., a supply chain, can be measured
by probability distribution, and Shannon’s network entropy can be used to assess its
complexity. To calculate it, the similarity between the node degrees in a graph is often
used [15,25], leading to Equation (2):

deg(v; deg(v;
Hgmph = _2?:1 gng l)logz gng l) 2)

where 7 is the number of nodes, m the number of edges, and deg(v;) is the number of
edges incident to node v; [25]. This definition of graph entropy will be used consistently
throughout the study, unless otherwise specified, when the term "entropy’ is used.

3.2. The Complexity of Coordination

To analyze the complexity of coordinating production systems, the following types
of complexity are distinguished: design complexity, coordination complexity, and
node complexity.

3.2.1. Design Complexity

Design complexity refers to the complexity involved in designing the coordination
system. Before a production system can operate, it must first be designed. This can be a
single-step process, but in most cases, it is a gradual development which may span several
years. For example, building a physical factory may occur within a specific period, but
developing operating systems that are effective and adaptable to changing circumstances
can take much longer. The network of suppliers and customer channels can be even more
intricate. Changing circumstances, along with continuous improvement efforts, aim to
make the production system as effective and efficient as possible. To synchronize the flow of
products and materials within the factory and across the entire supply chain, cycle times for
all production phases should ideally be equal [26] (p. 348). This standard cycle time, which
coordinates the whole production system and under which systems strive to operate, is
called “Takttime”. However, achieving perfect equality across all cycle times without slack
capacity is impossible due to inevitable disruptions in production. The design challenge
is to minimize the probability that delays at one location—whether at a workstation or
across the supply chain—will disrupt the entire system. The optimization task is to set the
Takttime as low as possible while accepting the following conditions:

o  Extra coordination is needed when Takttime cannot be met at a specific moment or
location in the production system.
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e  Both additional capacity and coordination are required when Takttime is exceeded.

A fundamental concept of the Toyota Production System (TPS) is shortening the supply
chain [27] (p. 203). In TPS, manufacturing systems and the supply chain have become highly
integrated into a cohesive production system. Toyota (and other companies adopting TPS)
expects their suppliers to adopt similar methods [27]( (p. 198). This integration is possible
only when the main company has enough power to influence and control its suppliers. In
TPS, workers in main factories are also required to be multiskilled. This flexibility enables
workers to assist at different workstations, thus “keeping the flow” [28,29]. There can
be many sources of disruptions [30]. For the scope of this study the distinction between
internal and external sources is important. The design of production systems aims to
convert uncontrollable factors into controllable ones. Sharma et al. [31] distinguish between
internal and external factors. Variation in process times due to differences in workers’
skill levels is an internal factor that needs to be minimized to meet Takttime. However,
if this variation is caused by external factors, such as the supply of raw materials from
vendors who are not directly controlled by the production system, then it becomes an
uncontrollable external factor. To work within Takttime, the supply of these materials
should be internalized within the production system, and the key question becomes to
what extent can external factors be made internal. Notably, full control over all factors
is not attainable due to uncontrollable events, e.g., the COVID-19 pandemic resulting in
supply chain disruptions. This study focuses on the coordination of internal factors.

3.2.2. Coordination Complexity

The complexity involved in coordination is related to the probability of situations
occurring with certain levels of entropy. In a production system where cycle times align
with Takttime, coordination is simplified and only required at the lowest tiers, as workers
can maintain Takttime through routine tasks. The system is therefore designed to accom-
modate variability and uncertainty, resulting in a lower probability of requiring additional
coordination, which stems from high process standardization, minimal errors, and/or
slack capacity.

3.2.3. Node Complexity

While the complexity and entropy of the overall network may provide insight into the
general challenges within a production system, as discussed in Section 2, it does not reflect
the information-processing requirements of its individual agents. Therefore, it becomes
crucial to also assess node complexity, which provides a simple yet effective means of
evaluating the role of nodes and their influence on the coordination process. Distinct node
influence metrics, such as degree centrality, may be employed to capture the extent to
which individual agents are dependent on or central to the overall resource and flow within
the network. As high-degree nodes are typically more critical to coordination, but face
higher operational demands, this simple metric helps to identify potential bottlenecks and
vulnerabilities in the system, potentially highlighting areas where additional coordination
or resources may be required to maintain its efficiency.

It is assumed that a maximum of one edge can exist between the same pair of nodes at
any given moment. Table 2 describes the variables used to describe coordination networks
of different production systems.



Logistics 2025, 9, 46

7 of 24

Table 2. Variables describing coordination networks of production systems.

Variable Meaning

Number of  The number of agents (such as workers, machines, or entities) involved
nodes in coordination within the system.

Number of  The total number of coordination links (connections) between the
edges nodes in the network.

The sum of incoming and outgoing edges associated with a node. It

Node d . . . N
ode degree signals the relative involvement of a node in the coordination network.

Averagenode The mean degree of all nodes in the network, i.e., the total number of
degree edges divided by the total number of nodes in the graph.

The highest degree among all the nodes in the network, indicating the
Maximum  most involved agent in coordination. The difference between the
node degree  average and maximum degree of nodes is used to measure the
centralization of coordination within the network.

In this context, entropy refers to graph entropy as a measure of the

ntropy structural complexity of the coordination network.

3.3. Network Simulation

System modeling and analysis simulations were implemented in Python [32], using the
following additional libraries: Pandas [33,34]; Matplotlib [35,36]; Plotly [37,38]; NumPy [39];
NetworkX [40,41]; and NetworkX-Temporal [42].

4. Two Examples of Coordination Systems

Two distinct production systems are described: the first is based on the principles of
the Toyota Production System (TPS), and the second is a university obstetrics clinic. The
TPS case was chosen to introduce key coordination concepts to the present study, which
are subsequently applied to analyze both cases, facilitating a comparative examination of
their coordination mechanisms.

4.1. Toyota Production System

In the TPS, constant synchronization occurs between the flows moving through the
production system. A key characteristic of these systems is the constant time interval (),
which defines the time between products in the production sequence. This interval, known
as Takttime, remains constant in traditional TPS [43] (p. 183), [44]. However, variations
in the TPS exist in which the Takttime may vary, depending on factors such as required
product features [45,46], demand volume, and patterns [47-49].

4.1.1. Slack and Constraints by Design to Deal with Variations

Not all products have the same processing rates within the departments in the TPS.
Variation in processing times may occur due to differences in the features ordered by the
customer, as well as quality issues with products or parts that need to be addressed within
these departments. The throughput time of each product at each department s; consists of
three components:

1. p;: Processing time for the product with standard features at the department.

2. pgir Extra processing time due to specific product feature requirements at the
department.

3. pg,i: Extra processing time of the product due to quality problems at the department.

In a Takttime system, the time intervals A are determined by design and must be
maintained during operational periods, except when the system is disrupted. Boundaries
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between departments in the production line must be set so that A remains constant, meaning
that for each department s;, the sum of the throughput times p; + py; + p,; must remain
balanced. The required amount of slack time is determined during the design phase to
handle variations in processing times and quality issues so that this balance is achievable.
The selection of features therefore plays an additional, but key role in this stage, as they
influence processing times.

The variation in processing times for different features impacts the decision regarding
the necessary redundancy in feature production. To minimize this variation, constraints on
the number and/or combination of features must be designed. These constraints might
limit the choices available to customers, but can be beneficial as well. For example, by
grouping certain features together, customers may receive additional features at a lower
price, compared to a system where a broad range of specific features can be individually
ordered. This approach helps standardize the production process and, in turn, reduces the
need for excess slack capacity.

4.1.2. A Closed-Loop Control System

A TPS resembles the coordination networks (f) and (g) described in Appendix A. A
key characteristic of these systems is that they are controlled by closed-loops. In the context
of system blocks, this control is achieved by design through specifically defined parameters.
Slack capacity functions as a buffer at two levels: at the workstation level it accommodates
variations in processing time, and at the system level, it ensures a smooth flow by absorbing
fluctuations across the production process. Each workstation has a defined trigger time,
which indicates when additional help from other workers within the same department is
needed to complete the task before the trigger time expires. If there is no time left—or if it
becomes apparent that there will not be enough time to finish the task—the ‘andon line” is
pulled, halting the entire production line. This action prompts the allocation of resources
from other workstations and preventing new orders from entering the production line. In
this system, the status is continuously monitored to ensure full awareness of the production
flow. For example, in a one-piece flow system, e.g., where only one car is processed at each
station on the production line at given moment, cars are spaced a certain distance apart,
which impacts the buffer time at each workstation.

4.1.3. Complexity in a Coordination Network: At System and at Node Level

To assess the complexity of the TPS, it must be analyzed both at the system (global)
level and at the workstation (node) level. In the TPS one-piece-flow system, local coordina-
tion occurs when the situation reaches a critical point (‘orange’), indicating a higher risk for
delays or deviations in the manufacturing process. In this case, one or more operators from
neighboring workstations will assist if possible, meaning there is information processing at
the local level.

It is also possible that certain orders consistently require assistance from neighbor-
ing workstations. This dynamic leads to a series of coordination networks over time,
which can be modeled as temporal networks. A temporal network can be represented
as a series of snapshots at different times [50], i.e., a list of graphs corresponding to the
aggregated dynamics observed in a specific interval. As the overall structure is therefore
shaped by “switching moments” [51]—points in time where the network’s configuration
changes—temporal graphs are useful to help identify patterns of coordination and relate
them to specific switching events. The local entropies in the TPS are always temporary: the
probabilities of these events occurring, as well as their durations, are known and determine
how much the local entropies contribute to the total system entropy. Balancing the TPS fac-
tory involves optimizing the amount of slack capacity in relation to the maximum possible
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entropy of the coordination system. Several examples of switching events are typical for
the TPS, which together illustrate its core principles and the coordination load it imposes.
The production system for all examples discussed here is kept fixed: seven workstations
are used for two parallel manufacturing processes, and the final product is delivered by
workstation 7, as shown in Figure 1.

Figure 1. Example of a TPS network at factory level.

4.1.4. Takttime, Adjacent, and Andon Coordination

The Takttime is always set to be equal to or greater than the required and actual
production time at the workstation level. A common cause of variation in production
time is the variability in production specifications. For example, in a car factory, the same
car model may come with different options; additionally, quality problems might arise,
which workers are expected to address at their respective workstations. If slack time were
allowed, there would be no need for coordination between workstations. However, this
approach is inefficient, and since the effects of product variety or quality problems cannot
be fully predicted, a system is employed where the workers at adjacent workstations
provide assistance when needed. To manage this, a threshold value is set. For simplicity,
only discrete time units (in minutes) are used. As an example, suppose that the Takttime is
34 min and the threshold value is 29 min. The base model requires 20 min, but on average,
an additional 7 min is needed to account for product variety and quality issues. Following
the approach of [52], the entropy of production time can be calculated as follows: each
minute beyond the average cycle time is considered an unfavorable event. The probability
p of encountering an unfavorable event i is given by Equation (3):

A
i Amax — davg

3)

where At is the interval between the average duration ¢;,¢ and the maximum durations ¢yx
and the denominator is the range of processing times (in minutes) that exceed the average.
The formula captures the probability of a deviation from the average cycle time within
this range. Therefore, I = {d,wg +1,..., dmax} represents the set of I of all unfavorable
events, and the total number of unfavorable events for an activity is equal to the number
of elements in the interval [dm,g, dmax] . The entropy for the time longer than the average
duration is then obtained by Equation (4):

i

s; = —2 )ln(pl-) 4)

i1 (dmax — davg

Using this duration entropy, a scale is established with two threshold values:
(1) help needed from adjacent workstations, and (2) help needed from all workstations in
the same factory. In this model, a uniform distribution of duration entropy is assumed.
However, as discussed in [52], the same reasoning can be applied using other probability
distributions. The trigger value « for requesting help from adjacent workstations is set
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at a certain threshold, which is defined as & = d;;; — 2. When unfavorable events occur,
leading to coordination issues, they can be analyzed using temporal networks. In the TPS,
there are two types of trigger values:

1.  Help time: time when adjacent workstations are asked (and expected) to provide
assistance.

2. Andon time: time when all workstations are asked (and expected) to provide
assistance.

Coordination resulting from andon time always has precedence over the coordination
prompted by help time. In Figure 2, a time slice is presented where at workstation 2,
the trigger value (help time) for adjacent coordination has been reached, while all other
workstations are below this threshold; for simplicity this is set at dgye. Help time is set
to 29 min, while andon time is set to 31 min, resulting in a slack time of 3 min in the
andon time window to prevent production system disruptions; therefore, highlighting the
importance of system design. When selecting the thresholds for help time and andon time,
constraints are imposed on the coordination approach. This capacity redundancy, which
allows for extra time for processing, is only feasible if the additional work can be completed
within the allotted extra time. Specifically, if the operators from adjacent workstations
consistently require more than two minutes to provide assistance to other workstations,
the help time window should be adjusted upwards accordingly. In the given example, it
is therefore assumed that tasks performed by operators from adjacent workstations take
less than two minutes. This includes the signaling of the request for help and the duration
of their movement. The same reasoning applies to andon time, although its window is
often longer to accommodate a wider range of tasks that can be performed by operators
from other workstations, providing greater flexibility in responding to support requests.
The scope of cooperation, and consequently its coordination, is influenced by factors such
as task size, layout (including form and distances), and the possession of multiple skills
by the operators. A smaller time window restricts coordination possibilities, while also
constraining complexity. In contrast, a larger time window enables greater cooperation,
but its coordination may become more intricate. These dynamics are explored in the
two examples presented.

By setting help time and andon time as in Figure 2, three coordination zones can be
distinguished:

1. Below 29 min: no coordination between workstations is needed.
2. Between 29 and 31 min: coordination occurs between adjacent workstations.
3. Above 31 min: coordination is required from all workstations.

Coordination becomes necessary because workers from workstations 1 and 3 not only
need to assist workstation 2, but also because helping others may impact the processing
times at their own workstations. In graph theory terms, this system can be modeled with
workstations (nodes) and coordination actions as edges. Each edge has a time attribute
corresponding to the amount of time allocated for coordination between the workstations.
For instance, if the network in Figure 2b is considered as a static graph, the entropy of
the entire coordination taking place equals 1.84. Note that in this scenario, workstations
belonging to different production lines (e.g., workstations 6 and 3) also require coordination.
However, considering the system as a temporal network, coordination activities take place
in two time zones, resulting in graph entropies of 0.92 and 0.59, meaning lower coordination
efforts. Figure 3 displays a comparison among all representations, considering the network
as static or temporal graphs.
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Figure 2. (a,b). Snapshots of example Takttime periods displaying all 7 workstations. Top (a): coordina-

tion between workstation 2 and adjacent workstations 1 and 3 is requested at help time. Bottom (b):

all workstations stop to help workstation 6 as it reaches andon time.
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©
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Figure 3. (a—c). Networks of workstations providing and receiving assistance. Graph representations

of static (a) and temporal (b,c) networks at different coordination times.

When two coordination networks are closely connected and share common nodes,

they can be treated as a single, unified network. For the participants, coordination requires

time and effort which may add stress to their workload. Therefore, coordination networks

operating within the same time zone and sharing nodes are considered as one integrated

network. For example, in the static graph scenario, if workstations 1 and 3 also require

assistance from adjacent workstations, the following connections occur:
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1. For workstation 1, workstation 2 becomes involved.
2. For workstation 3, both workstations 1 and 2 become involved.

This integration allows us to analyze the structural characteristics of coordination
networks based on parameters such as help time, andon time, and Takttime. These networks
may be categorized into:

1. Situation networks: formed in response to routine coordination demands based on
help time.
2. Andonnetworks: formed when andon time is reached, requiring broader coordination.

It is important to note that although such networks can be integrated by sharing nodes,
they may also remain separate, depending on the situation. Consequently, the analysis
must not only measure the entropy of these networks, but also consider other structural
metrics, such as the node degrees and number of edges occurring in time zones. Finally,
the focus of this study is on coordination networks when the production system is under
control, i.e., when Takttime is not exceeded. Networks in which Takttime is exceeded, and
the system is effectively out of control, are out of the scope of analysis.

4.1.5. TPS Case Study

This section presents a simulation-based study of a production system based on Toyota
Production System (TPS) principles. The study examines scenarios across various time
zones, aiming to provide insights into the likelihood of formation of situation networks
and andon networks, as well as their structural characteristics. The simulation investigates
both the probabilities of process times that lead to the formation of coordination networks
and the threshold for network development, i.e., that trigger the creation of situation and
andon networks and aims to understand how these factors influence the evolution and
complexity of coordination networks under a controlled production system. This enables
the identification of patterns and structural properties, such as entropy, node degrees, and
edge dynamics in coordination networks, and the analysis of how design choices, such as
help time and andon time thresholds, affect the system’s efficiency and ability to manage
coordination demands, while maintaining control within the production system.

Scenario Generator

In this scenario, a generator simulates coordination dynamics in a production system
with workstations 1 through 7 over a time scale of 1 to 100 time units. The simulation
is based on a Monte Carlo process and explores different configurations of parameters,
described in Table 3, to study the conditions under which the situation networks and andon
networks emerge.

Table 3. Parameters for scenarios. Note that c¢1 < ¢3, (c1 + ¢2) <=c3,and c3 < c4 <5.

Parameter Description Parameter Value
cl Time without features (standard time) 60
Mean extra time (due to product features or
€2 quality issues, based on uniform distribution) range (5 25, 5)
Help time (trigger time for coordination from
c3 adjacent workstations, added to c2) range (5 15, 5)
4 Andon time (trigger time for coordination from range (10, 25, 5)

all workstations, added to c2)

c5 Takttime (maximum time per cycle) 100
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Each scenario is a unique experimental combination of the mean extra time (c2), help
time (c3), and andon time (c4). Each Takttime period is simulated n = 1000 times using a
Monte Carlo process, and the variations between scenarios are reduced by using a set of n
random numbers for the simulations. This approach enables a detailed analysis of how
varying mean extra time, help time, and andon time thresholds influence the emergence
and complexity of coordination networks within the production system.

Simulation Results

Different scenarios can be identified based on Table 3.

1.  No situation or andon entropy (entropy is 0 for both). Occurs when help time, andon
time, and maximum duration are identical. Assumes 100% standard process times
with no disturbances; in practice, any disturbance would immediately cause the
system to fall out of control, as no buffer for coordination exists. This is a highly
unrealistic scenario, unless there are no variations in process or task times.

2. Situation entropy exists and there is no chance that andon entropy exists. This is
only the case when the andon time is set at the maximum duration time. All process
time variations are managed locally through help time coordination. Coordination
efforts likely result in situation entropy and an increase in local edges. This set up may
be deliberate, such as when an organization prioritizes local coordination or lacks
sufficient multiskilled workers for broader (andon) coordination. Without multiskill
training, andon coordination is infeasible, and local solutions become the default.
Alternatively, this way of coordination may also be a matter of choice, such as in
organizations where local over andon coordination may be preferred.

3.  Situation entropy exists and there is a chance that andon entropy develops. It is
characterized by the maximum process time exceeding andon time. When the maxi-
mum possible process time is above andon time, there is always a chance that andon
coordination is activated. The likelihood of andon coordination and its entropy there-
fore increases with longer andon time zones and decrease with longer help time
zones—the latter of which reduces the frequency and impact of andon coordina-
tion. The interplay between help time and andon time zones determines the balance
between localized (situation) and global (andon) coordination efforts.

The amount of entropy and the differences between help time and andon coordination
are analyzed by rescaling andon entropies between 0 and 1 and comparing the number of
edges. In all 24,000 occurring instantiations, the number of edges and the entropy metrics of
the different phases are presented in Tables 4 and 5. Relative to their entropy values, andon
coordination networks have far more edges compared to situation (adjacent) coordination
networks when activated, which indicates that the latter are smaller, but less structured,
resulting from the merging of local networks—often due to adjacent workstations assisting
each other. Although local coordination (help time) appears simple, it gives rise to intricate,
dynamic networks as multiple local interactions merge and more complex coordination
networks emerge.
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Table 4. Node characteristics of possible situation coordination networks, based on all scenarios
(24,000 replications).

Situation Networks (Local Coordination)

Max Average Entropy
Degree = Degree (g 0.86 0.99 1.15 1.38 1.45 156  1.66 1.84  1.95
1.71 0.00% | 243% 0.00% 000% 0.00% 0.00% 000% 0.00% 0.00% 0.00%
2 200 | 3849% 000% 0.00% 000% 000% 0.00% 000% 0.00% 0.00% 0.00%
2.00 0.00%  0.00%  0.00% | 7.09%  0.00%  0.00% | 464% 0.00% 0.00% 0.00%
3 2.29 000% | 715%  0.00% 000% _ 028% 741% 000% 0.00% 0.00% 0.00%
257 0.00%  0.00% | 1.88% 000% 0.00% 0.0% 000% 0.00% 0.00% 0.00%
2.00 0.00%  0.00%  0.00%  0.00% 0.00%  0.00% 0.00% 0.00% 0.00%
2.29 0.00%  0.00%  0.00% 000%  0.00% 0.00%
4 257 0.00%  0.00%  0.00%  0.00% 0.00% 0.00%
2.86 0.00%  0.00%  0.00%  0.00% 0.00% 0.00%  0.00%

Table 5. Node characteristics of possible andon coordination networks, based on all scenarios
(24,000 replications).

Andon Networks (Global Coordination)

Maximum Average Andon Entropy
Degree Degree 0.00 0.59 0.86 0.99

2 2.00 76.62% 0.00% 0.00% 0.00%
371 0.00% 5.12% 0.00% 0.00%
5.14 0.00% 0.00%
6.29 0.00% 0.00%

8 714 0.00% 0.00%
771 0.00% 0.00%
8.00 0.55% 0.00% 0.00% 0.00%

The design of help time and andon time thresholds has a significant impact on the
coordination load and network complexity. The distinction between help time and andon
coordination lies in their scale and structure, where help time manages local disruptions
through a simpler, yet less effective approach to address broader issues, and andon coordi-
nation addresses larger-scale disruptions, exhibits greater complexity, and requires higher
worker skill levels. These findings underscore the importance of striking a balance between
slack capacity, training multiskilled workers, and designing optimal thresholds to enhance
coordination efficiency.

4.1.6. Phase Transitions and Complexity

A key characteristic of the TPS lies in the deliberate design of phase transitions that
guide the system through different states of coordination. These transitions can be described
in terms of entropy and node complexity within the coordination networks:

1.  From “Need Help” to “Andon”. Triggered by breaching help time threshold, prompt-
ing localized coordination. Node complexity increases and entropy rises as local
coordination networks emerge, particularly for nodes requiring assistance and their
adjacent nodes.

2. From “Andon” to “Out of Control”. Andon time threshold is surpassed, leading
to system-wide coordination or failure. Node complexity becomes concentrated, as
certain nodes bear disproportionately high coordination loads. Fluctuation of entropy
levels is initially high during widespread coordination, then stabilizes at medium
levels if resolved efficiently. Otherwise, it peaks at very high levels if the system is
overwhelmed (out of control).
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The relationship between system-level complexity and the information processing
challenges faced by individual agents offers significant insights into the dynamics of
TPS coordination networks. While the overall production system entropy measures the
variability and uncertainty at a macro level, it does not fully capture the localized decision-
making challenges or communication burdens on individual agents. This distinction
highlights the interplay between the network structure and node-specific roles in the TPS:
when a network has less structure, more information processing is needed, and when
nodes display a higher degree, their tasks are more complex. Andon coordination networks
appear to be more extensive, exhibiting relatively low entropy and high maximum node
degrees (compared to the average), and displaying a higher complexity of decision-making
that is more centralized on certain nodes. Tables 4 and 5 present the node characteristics
in relation to situation and andon coordination networks entropies; note that the value of
situation entropy is independent of andon time.

Table 4 presents the node characteristics of possible situation coordination network
entropies based on 24,000 scenario replications. It can be observed that no clear relationship
exists between node degree and situation entropy; however, as the entropy increases, the
likelihood of higher mean node degrees rises slightly, while maximum degrees increase
more significantly. Although this indicates that high situation entropy is associated with
greater centrality in coordination, driven by the merging of several local temporal networks,
this centrality should not be mistaken as a display of hierarchy. Notably, even when the
maximum degree is 2 and the average degree is 2 or less, entropy can still exist if the
number of edges is fewer than the number of nodes, as exemplified by a scenario where
the maximum degree is 2, the average degree is 1.71, and situation entropy is 0.86, when
six nodes and six edges are involved.

As shown in Table 5, both the average and maximum node degrees significantly
increase in the presence of andon entropy, when contrasted with situation entropy. How-
ever, entropy associated with node degrees is much lower in the case of andon networks,
suggesting that the involvement and centralization of node coordination during global
coordination are more controlled.

4.2. Obstetrics Case Study

In contrast to the TPS, obstetrics clinics represent systems with a high level of uncer-
tainty. In this example, the focus is on the coordination of nurse activities. The obstetrics
clinic is characterized by unpredictable patient arrivals, variable lengths of stay, and fluctu-
ating coordination needs. The clinic has a maternity ward with 22 beds and delivery rooms
capable of handling both elective and non-elective births. According to the typology of
coordination systems in Table 1, the obstetrics clinic most closely resembles type (a), i.e.,
without feedback loops. Essentially, the flow of patients remains under control up to a
certain cap, and when this cap is exceeded, patients are referred to other clinics.

4.2.1. Scenario Generation: Coordination in Different Levels of Occupancy

The coordination system for the nurses in the obstetrics department is organized as
follows: generally, six nurses are available to manage the 22 beds. To optimize coordination,
the nurses divide the patients into groups, ensuring that two nurses always work in
proximity. This arrangement creates three teams of patients. Coordination is primarily
carried out within each team, meaning that two nurses coordinate their tasks. If the
workload at any given moment exceeds the workload that two nurses can handle, one
nurse seeks assistance from a nurse in another team. This coordination can trigger further
coordination activities. For instance, the nurse who is approached for assistance may need
to consult with their teammate, or it could be that no nurse in the approached team is
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available, thus requiring the involvement of another team. The workload and length of
stay for a patient are unknown prior to admission, introducing an additional layer of
unpredictability. Moreover, the number of patients requiring admission on any given day is
also uncertain, contributing to the overall variability of the system. The clinic’s maximum
capacity for admissions is limited by the available induction capacity, which restricts the
number of inductions to a maximum of eight per 24 h. The number of patients admitted
varies between zero and eight per day. If the clinic reaches full capacity or the maximum
induction limit is reached, additional patients are referred to a different hospital.

4.2.2. Model Description

The described model focuses on measuring the need for coordination, instead of
the workload. Patient admissions and lengths of stay (LoS) are represented as Poisson
processes, with an average interarrival time of three hours and an average LoS of 38 h.
Assigning patients to teams is arbitrary, as the expected workload is not known in advance.
Therefore, it is essential that nurses from different teams assist each other. The demand
for care by a nurse is determined by patients per hour, with the rate set at 0.5 to introduce
a high level of randomness in care requirements. The capacity needed for coordination
is measured in terms of edges, representing the communication between pairs of nurses
within and across teams. Coordination is required when two or more patients within the
same group require nursing attention concurrently, resulting in a demand that exceeds the
available nurse capacity. In such instances, nurses from other teams coordinate to facilitate
the transfer of a nurse to provide assistance, thereby ensuring that patient needs are met.
Once the transferred nurse completes the task, they return to their original team. Therefore,
if all groups require the same level of attention, no transfers are necessary.

4.2.3. Simulation Results

A simulation of 500 days (12,000 h) of coordination in a three-segment obstetrics ward
is presented here. The number of patients requiring nurses was calculated in hourly inter-
vals, shown in Figure 4. As observed, the patient demand for nurses exhibits substantial
variability across different segments over time, underscoring the need for coordination and
highlighting the importance of system design, as previously discussed. The application of
coordination rules leads to the formation of coordination networks, subsequently analyzed
with the method presented in this study.

w & w

Number of patients with nurses

[N]

0 2000 4000 6000 8000 10000 12000
Time (hour)

Figure 4. Simulation of patients staying at the three segments of the clinic and their need for nurses,
considering hourly periods. Each segment is represented by a distinct color (blue, orange, and green).
The number of patients shown are per segment (the bars are unstacked).



Logistics 2025, 9, 46

17 of 24

In the resulting coordination networks, patients are represented as nodes and nurse
communications as edges. The system remains coordinated at all times: when a nurse
needs help, they first seek assistance from available nurses within their own segment; if
none are available, they reach out to another segment; if successful, the nurse responding
to the request becomes unavailable to their own segment for a period of time. Thus, when
additional help is required, another team is immediately approached, enabling the system
to maintain coordination and respond to changing demands.

The aggregated analysis of the resulting networks considering 24 h intervals is shown
in Figure 5. As expected, the number nodes and edges in the networks are positively
correlated, indicating that an increase in patient numbers leads to a higher workload and
a greater likelihood of nurses needing to assist each other. The entropy values in these
networks range from 0.92 to 2.22, while the average degrees vary between 3.00 and 4.15.
The entropy in this system is consistently above zero, while the maximum degree fluctuates
between seven and nine throughout time. In only 58 times (11.6%), a maximum degree
of seven was observed, while in all 442 other instances (86.4%), it reached a value of nine.
Most importantly, the lowest entropy value occurs only when the maximum node degree is
seven, indicating that the most predictable coordination structure is only achieved with
limited connections between nurses.
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Figure 5. Simulation of 500 days of coordination of the obstetrics ward, considering 24 h periods.
Top: number of patients (nodes) and edges (nurse communications). Bottom: normalized entropy
and mean degree values, ranging from 3.00 (0.0) to 4.15 (1.0).

Table 6 shows that the entropy of coordination remains consistently above zero, with
most values falling within moderate ranges (green and orange areas). The mean degrees
also tend to be generally moderate, though both entropy and average degree values exhibit
significant variation. Lastly, as shown in Figure 6, the number of both nodes and edges
is high when many patients are admitted, which expectedly increases the likelihood that
entropy will rise. However, even with the same number of nodes and edges (indicating a
similar ‘need for help’), entropy values may vary depending on how this need is distributed
over time. As observed, although entropy does not exhibit high levels in this system,
coordination is always required, which is often not necessary in the TPS example.
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Table 6. Relation between entropy and average node degree at the obstetric clinic. The mean degree
varies between 3 and 4.08. The entropy values range from 0.92 to 2.23, with 242 distinct values. The
lowest entropy value occurs only when the maximum degree is 7. Entropy and average degree values

have been binned into value ranges of 0.1.

Average Entropy (Normalized Between 0 and 1)

Degree  0,0-0.1 0.1-02 02-0.3] 03-04 04-05 05-0.6 0.6-0.7 07-08 0.8-0.9 0.9-10
00-0.1 [11.80% 1.80% 12.00% 9.40%  820% [NCEOSGNNEOEAN 000%  0.00%  0.00%
0.1-02  0.00% | 0.60%  0.00% | 140%  3.20% 0.00%
02-03  0.00% 0.00% 0.00% _ 080%  0.60% 0.00%
03-04  0.00% 0.00%  0.00%  0.00% | 0.40%

05-0.6  0.00% 0.00%  0.00%  0.00%  0.00%  0.00%

0607  0.00% 0.00% 000%  0.00%  0.00%  0.00% 0.00%
07-08  0.00% 0.00% 0.00%  000%  0.00% [EEEEN0G0NN00tSN0R00 0.00%
08-0.9  0.00% 0.00% 0.00% 0.00% 0.00%  0.00% 0.00%  0.00%
09-10  0.00% 000%  0.00%  0.00%  0.00% | EOMRROs0aN 000%  0.00%  0.00%
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Figure 6. Entropy in relation to other variables of interest. Left: relationship between the total number
of nodes, edges, and entropy. Colors represent the mean degree for each situation (24 h). Right:
relationship between the total number of patients at each hour, summed over 24 h, the number of
nodes, and entropy, with the average degree shown in the left image.

5. Discussion

Coordination of production systems can be highly complex; this study demonstrates
that constraints play a significant role in reducing this complexity. Effective system design
aims to balance the reduction in coordination complexity with the need for flexibility,
using constraints to simplify coordination while maintaining adaptability. To evaluate this
complexity, the physical and coordination networks of a production system are separated,
and entropy measures are employed in combination with node influence metrics, an
approach that has been proven valuable in previous research.

Two production systems with vastly different arrival patterns for orders and services
were analyzed: a highly predictable Toyota Production System (TPS), characterized by
a high design complexity, and an obstetrics clinic, characterized by a high uncertainty
in patient arrivals and throughput times, yet a relatively low design complexity. We
further model the coordination network as a series of temporal networks, enabling a deeper
understanding of the timing, frequency, and forms of coordination that arise.

5.1. Differences in Entropy and Network Metrics Among TPS and the Obstetrics Clinic

In the TPS, coordination networks rarely develop, and are only activated in response
to well-defined, unfavorable events. These networks can be described using metrics such
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as entropy, average degree, and maximum degree of nodes. The values of these metrics
are limited and closely related, with the interplay between average and maximum degree
indicating the level of centralization of coordination at specific nodes, i.e., units within
the production system. When coordination relies mostly on adjacent nodes, as in the
TPS 'need help’ scenario or among nurses in the obstetrics clinic, temporal networks can
form with coordination concentrated at particular nodes, leading to centralization. This
requires these central nodes to have sufficient capacity to handle the coordination. This
can be problematic as it is uncertain in adjacent coordination networks which nodes will
become central.

As it is uncertain in adjacent coordination networks which nodes will become cen-
tral, all nodes should be equipped with the necessary capacity and skills to take on this
responsibility. If this is not feasible, it is recommended to avoid adjacent coordination or
shift to andon coordination shortly after ‘'need help’ triggers adjacent coordination. In the
obstetrics clinic, where only adjacent coordination occurs, the low control over admissions
and workload results in the constant activation of temporal coordination networks that are
always connected. In this example, the outcome is that there is never a situation without
entropy, as many nodes are always involved in the coordination process.

5.2. Design Complexity: Open Versus Closed Loop Systems

The obstetrics clinic example resembles a push system of type (a), and the TPS example,
a pull system of types (f) and (g), according to the typology presented in Appendix A.
In a push system work is scheduled based on demand, whereas in a pull system, it is
authorized based on its current status [53]. Open-loop systems, like the obstetrics clinic,
face challenges in utilizing feedback and taking action to optimize workflow [49] (p. 59),
as important information necessary for maintaining control over the production system
is either unavailable or not used effectively. As a result, the interdependence between
demand and production is insufficiently managed in such systems, and the entropy of
demand is not sufficiently reduced, requiring slack capacity to accommodate variability in
production and coordination.

In network terms, not defining constraints on the development of the coordination
network can lead to emergent constraints and potential capacity loss. High entropy and
high maximum degree nodes in coordination networks indicate emergent constraints and
suggest a lack of control over them. In such cases, the coordination network itself imposes
limitations on the system’s capacity. This lack of control over coordination can lead to
inefficiencies, as the system struggles to adapt to unforeseen demands or changes in the
environment. In contrast, pull systems, such as TPS, manage coordination more effectively
by continuously adjusting based on real-time system feedback. This approach reduces the
likelihood of emergent constraints and minimizes the need for slack capacity. The ability to
adapt quickly to changes in demand and production status is therefore a key advantage of
pull systems over push systems, especially in environments with higher uncertainty.

5.3. Crises and Shocks

This study primarily focuses on entropy measures within stable production systems
and does not account for economic shocks, sudden sourcing shortages, or other out-of-scope
events. Understanding how production systems respond to crises and shocks warrants
future investigation, which may likewise utilize entropy and production system metrics to
evaluate more dynamic conditions.

5.4. Entropy Methods

Shannon entropy was chosen to measure the complexity of coordination in this study,
although alternative entropy methods may also be employed for the same purpose. Notably,
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Jensen-Shannon divergence has been used in Network Portrait Divergence analysis [54-56],
especially in the life sciences, to establish a ranking of distinct graphs, in which edges may
be weighted. A similar approach could potentially extend the methodology presented in
this article, for instance, to incorporate information on the physical distance between nodes
in the coordination network as edge weights, enabling the consideration of additional
factors in their analysis.

5.5. Limitations and Future Research

The content of the edges in the coordination network is not examined in this study.
However, future research could benefit from incorporating edge content to improve on their
analysis. Moreover, considering the duration of temporal coordination networks would
allow accounting for switching events, such as when situational coordination transitions
into andon coordination after a specific time limit is exceeded. Future research may also
explore the potential for defining additional switching events based on actual coordination
entropy, where the type of coordination changes in response to reaching a certain threshold.

This study also does not investigate the consequences of coordination on capacity
utilization, a crucial area that warrants further research. As coordination affects overall
system capacity, examining these consequences is therefore an essential task. The optimal
amount of slack time likewise requires further investigation, particularly in healthcare
settings such as the one presented. Beyond its importance for efficient care delivery, a lack
of slack can increase stress and dissatisfaction among healthcare professionals, leading
them to feel a loss of autonomy and ultimately contributing to their decision to leave their
job [57].

6. Conclusions

This article introduces a novel method for modeling and analyzing coordination
systems such as temporal networks, leveraging Shannon entropy and node influence
metrics to uncover the complexities of coordination dynamics. The proposed approach
was applied to two diverse case studies, allowing a comparative analysis of a Toyota
Production System and a university obstetric clinic, yielding valuable insights into their
distinct network structures and behaviors.

In the TPS example, zero-entropy situations occurred in 38.40% of ‘need help’ time
windows, characterized by local coordination. In contrast, andon coordination exhibited
zero entropy in 76.62% of all situations. The highest entropy values were observed in
the ‘need help’ time windows. Notably, outside of zero-entropy situations, andon coor-
dination networks had higher average and maximum node degrees compared to ‘need
help’ coordination networks. This suggests that andon networks exhibit a more organized
concentration of nodes that fulfill a coordination function. As the ‘need help’ time win-
dows increase in duration, the likelihood of uncontrolled coordination networks emerging
also grows. Therefore, the 'need help’ time windows should be sufficiently long to facili-
tate adjacent coordination yet constrained in time to minimize the odds of uncontrolled
networks arising.

In the university obstetric clinic, only local coordination occurs frequently and is
relatively unconstrained. Observed entropy values ranged between 0.92 and 2.23, whereas
average degrees varied between 3 and 4.08 indicating that coordination needs typically
involve more than two nurses. This is a notable difference from the TPS example, where
coordination needs are generally low for most of the time, while in the obstetric clinic,
coordination needs are consistently higher.

The comparative analysis of the two case studies reveals distinct characteristics of
coordination systems, highlighting the importance of context and system-specific factors in
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shaping network dynamics and ultimately enabling a well-informed system design. Future
research can build on these findings to explore the implications of these dynamics in various
domains, and to develop more nuanced understandings of the complex relationships that
underlie effective coordination.
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Appendix A

Typology of coordination networks for production systems. The systems described
from (a) to (g) represent production systems that utilize feedforward and feedback loops to
measure the status of workstations and work in progress. Note that this typology refers
only to production line systems, not job shop (“criss-cross”) systems, although systems (e)
and (g) may also be applied to job shop systems.

Physical and Information Flows Type of Coordination Network

(a) No feedback loops. Products and materials flow from upstream stations to
o_'e_'e_'o_'e_' downstream stations once ready, independent of the status of the downstream

stations. No information is sent upstream, and no coordination occurs.

(b) Local feedback loops. Downstream stations communicate their status to

o:o:m: the next upstream workstations, enabling adjustments to their operations.

Coordination occurs via local feedback loops, and if feedback times are short,
this coordination can operate nearly in real-time at the system level.

(c) Central planning without feedback loops. Similar to (a), but with an added
central planning function. The planning function has two roles: (1) production
leveling: determining the volume, mix, and order of products to meet demand
and smooth the workload; and (2) capacity assignment: allocating capacity to
workstations. Communication between upstream and downstream stations is
absent, and coordination is achieved centrally. This system works best when
operations are deterministic. If operations are not fully deterministic, slack
capacity must be available at each workstation, and waiting times between
workstations should be allowed. Slack capacity and waiting times serve as
buffers, but their extent is difficult to predict.
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Physical and Information Flows Type of Coordination Network

(d) Central planning with local feedback loops. Combination of (b) and (c).
The planning function is the same as in (c), but operational coordination is
achieved entirely through local feedback loops. This system is especially
useful for production systems with many product variants. Unlike (c), slack
capacity and waiting times between workstations are controlled locally.

(e) Local and global feedback loops. This system builds on (b) by
incorporating work-in-progress coordination. Order release is influenced by
the total amount of work in progress from the last station to the first (upper
red line). It is also possible to measure and communicate the workload
between the first workstation and an intermediate station to the beginning of
the chain (middle red line). This addition of global control to the local
feedback loops, contrasting with (b), allows upstream stations to adjust their
workload based on downstream constraints, implying the need for assistance
from workers from adjacent stations. The extent to which this is possible
depends on whether the standard workload plus a surplus factor (including
slack) is below a predefined threshold. If this threshold is exceeded, the
release of orders stops.

(f) Central planning with local and global feedback loops. Combination of (c)
and (e), used for work-in-progress coordination. As in (d), the rationale for
the planning loop (in black) is to be found in occasions when many different
product variants are to be produced, allowing for the central relocation

of workers.

(g) Local and global feedback loops with synchronization. Similar to (e), but
applied to multiple production lines. Work in progress is measured from
workstations 1 to 4, from workstations ‘a’ to 4, from the first to the defined
‘end station’, and from ‘a’ to the ‘end station’. In total, four work-in-progress
measurements are used to control the production system. With multiple
production lines, synchronization between these lines is necessary. This
means that the release of orders across different production lines must be
coordinated (e.g., at workstations 1 and “a’). This system also allows workers
from adjacent workstations on different production lines to assist each other.
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