3rd Graph Neural Networking Workshop (GNNet '24)
December 9th, 2024

Deep Node Clustering in Attributed Temporal Graphs: Experimental Evaluation of Current Approaches

Nelson A. R. A. Passos, Emanuele Carlini, Salvatore Trani

Introduction

About me:

PhD candidate in AI @ Unipi/CNR, Italy

My research:

Intersection between Network Science and Machine Learning

What to expect from this presentation:

A discussion of the current SOTA for <u>node-level clustering</u> of temporal graphs

Introduction

About me:

PhD candidate in AI @ Unipi/CNR, Italy

My research:

Intersection between Network Science and Machine Learning

What to expect from this presentation:

A discussion of the current SOTA for <u>node-level clustering</u> of temporal graphs

i.e., community detection (CD)

Introduction

Figure: Temporal graph snapshots (left) combined in a static graph (right).

Why community detection matters?

One of the oldest and most debated topics in Network Science

- Multidisciplinary history, with contributions from "hard" and "soft" sciences
- Multiple applications: recommendation systems, route planning and traffic control, social network analysis, wildfire detection, fraud detection + many others

Algorithmic approaches

- The first models for this task were based on the Ising model (large ongoing influence)
- Many other models introduced since then:
 - Optimization-based (modularity)
 - Statistical inference (SBM)
 - Matrix factorization (NMF)
 - Label and belief propagation (LP/BP)
- Non-Euclidean data: traditional ML-based approaches do <u>not</u> promptly work to learn on them

Algorithmic Neural approaches

Renewed interest in neural approaches, i.e., graph representation learning

- First models relied on "shallow" encoders:
 - DeepWalk (Perozzi et al., 2014)
 - Node2Vec (Grover et al., 2016)

 More recently: graph neural network-based models introduced for "deep" node clustering"

Figure: Levels of prediction of a Graph Neural Network (Leskovec et al., 2024)

What about nowadays?

Algorithmic and neural solutions for CD are both still researched at large

However, most models - especially GNNs - are designed for static graph learning

In the real world, networks are rarely fixed and continuously evolve over time instead

So we asked ourselves:

How well do neural approaches for CD in temporal graphs perform when compared to more established methods?

An experimental evaluation

We performed an evaluation of 8 models on 6 real-world datasets of various scales.

• TGC (Liu et al., 2024): the only GNN introduced for temporal node clustering so far

Model	Input	Topology	Features	Temporal
K-Means	X_V		✓	
Spectral Clustering	G	\checkmark		
Leiden	\boldsymbol{G}	✓		
Node2Vec	G	√		
DynNode2Vec	\mathcal{G}_S	\checkmark		✓
tNodeEmbed	\mathcal{G}_S	✓		✓
DAEGC	G	✓	✓	
TGC	\mathcal{G}_E	\checkmark	✓	\checkmark

Dataset	V	<i>E</i>	3	S	d^V	y	t
arXivAI	69 854	696 819	696 819	244	128	5	27
Brain	5 000	883 207	1 007 744	1	128	10	12
DBLP	28 085	150 571	222 169	113	128	10	27
Patent	12 214	41 916	41 916	5	128	6	891
PubMed*	19 717	44 324	44 324	1	500	3	42
School	327	5 818	188 508	1	128	9	7 375

Tables 1 and 2: Models (algorithms, "shallow" encoders, graph neural networks) and datasets considered for evaluation.

Our methodology

First we obtained node embeddings using each selected model/algorithm function.

We then used K-Means to compare their performance and separability of embeddings.

Figure: Temporal graph snapshots, node embeddings (middle), obtained clusters (right).

Dataset	Model	ACC	AMI	ARI	_	Dataset	Model	ACC	AMI	ARI
	Spectral	.389 ± .002	.016 ± .008	.012 ± .006	-		Spectral	.575 ± .011	.365 ± .023	.319 ± .046
	Leiden	$.525 \pm .033$	$.302 \pm .027$	$.239 \pm .031$		Leiden	$.431 \pm .026$	$.203 \pm .016$	$.140 \pm .027$	
	Node2Vec	$.646 \pm .001$	$.363 \pm .001$.404 ± .001			Node2Vec	$.400 \pm .020$	$.270 \pm .022$	$.171 \pm .026$
arXivAI	DynNode2Vec	$.268 \pm .001$	$.001 \pm .001$	$.000 \pm .001$		Patent	DynNode2Vec	$.354 \pm .038$	$.139 \pm .045$	$.089 \pm .042$
	tNodeEmbed	$.673 \pm .001$	$.299 \pm .001$	$.312 \pm .001$			tNodeEmbed	$.424 \pm .048$	$.248 \pm .024$	$.177 \pm .035$
	DAEGC	OOM	OOM	OOM			DAEGC	$.462 \pm .029$	$.315 \pm .052$	$.271 \pm .052$
	TGC	$.646 \pm .001$	$.363 \pm .001$.404 ± .001		TGC	$.503 \pm .019$	$.329 \pm .027$.272 ± .035	
	Spectral	.485 ± .001	.498 ± .001	.320 ± .001			Spectral	.593 ± .003	.162 ± .008	$.143 \pm .004$
	Leiden	.404 ± .011	.470 ± .016	$.300 \pm .017$			K-Means	$.595 \pm .001$	$.312 \pm .001$	$.281 \pm .001$
	Node2Vec	$.452 \pm .002$	$.466 \pm .001$	$.270 \pm .001$	PubMed*	Leiden	$.633 \pm .018$	$.256 \pm .020$	$.245 \pm .033$	
Brain	DynNode2Vec	$.163 \pm .002$	$.049 \pm .001$	$.019 \pm .001$		Node2Vec	$.687 \pm .001$	$.289 \pm .001$	$.312 \pm .001$	
	tNodeEmbed	$.417 \pm .002$	$.434 \pm .001$	$.243 \pm .002$		DynNode2Vec	$.543 \pm .001$	$.192 \pm .001$	$.135 \pm .001$	
	DAEGC	$.414 \pm .010$	$.431 \pm .009$	$.253 \pm .010$			tNodeEmbed	$.673 \pm .001$	$.297\pm.001$	$.307 \pm .001$
	TGC	$.434 \pm .001$	$.497 \pm .003$	$.288 \pm .003$			DAEGC	$.713 \pm .040$	$.320 \pm .042$	$.339 \pm .065$
-	Spectral	.289 ± .001	.008 ± .001	.000 ± .001	- 3		TGC	$.677 \pm .001$	$.254 \pm .002$.280 ± .002
	Leiden	$.400 \pm .013$	$.302 \pm .003$.187 ± .005			Spectral	.967 ± .001	.940 ± .001	.933 ± .000
	Node2Vec	.466 ± .001	$.351 \pm .001$	$.207 \pm .001$			Leiden	$.851 \pm .023$.911 ± .008	.843 ± .016
DBLP	DynNode2Vec	.155 ± .002	$.006 \pm .001$.002 ± .001	School	Node2Vec	.999 ± .002	.998 ± .004	.998 ± .004	
	tNodeEmbed	.451 ± .001	$.345 \pm .001$	$.203 \pm .001$		DynNode2Vec	$.200 \pm .004$	$.025 \pm .002$	$.013 \pm .001$	
	DAEGC	$.465 \pm .010$	$.344 \pm .004$	$.219 \pm .004$		tNodeEmbed	$.200 \pm .002$	$.025 \pm .001$	$.013 \pm .001$	
	TGC	.471 ± .001	.355 ± .001	.209 ± .001		DAEGC	$.997 \pm .006$	$.994 \pm .009$	$.993 \pm .010$	
		<u> </u>	<u> </u>				TGC	$.997 \pm .001$	$.994 \pm .001$	$.994 \pm .001$

Table 3: Results comparison. Best results in **bold**, second best in *italic*, and highest mean values <u>underlined</u>.

Dataset	Model	ACC	AMI	ARI	-	Dataset	Model	ACC	AMI	ARI
	Spectral	.389 ± .002	.016 ± .008	.012 ± .006	-		Spectral	.575 ± .011	.365 ± .023	.319 ± .046
	Leiden	$.525 \pm .033$	$.302 \pm .027$	$.239 \pm .031$		Leiden	.431 ± .026	$.203 \pm .016$.140 ± .027	
	Node2Vec	$.646 \pm .001$.363 ± .001	$.404 \pm .001$			Node2Vec	$.400 \pm .020$	$.270 \pm .022$.171 ± .026
arXivAI	DynNode2Vec	$.268 \pm .001$	$.001 \pm .001$	0.000 ± 0.001		Patent	DynNode2Vec	$.354 \pm .038$.139 ± .045	$.089 \pm .042$
	tNodeEmbed	.673 ± .001	$.299 \pm .001$.312 ± .001			tNodeEmbed	$.424 \pm .048$	$.248 \pm .024$.177 ± .035
	DAEGC	OOM	OOM	OOM			DAEGC	$.462 \pm .029$.315 ± .052	$.271 \pm .052$
	TGC	.646 ± .001	.363 ± .001	.404 ± .001		TGC	$.503 \pm .019$	$.329 \pm .027$.272 ± .035	
	Spectral	.485 ± .001	.498 ± .001	.320 ± .001	-		Spectral	.593 ± .003	.162 ± .008	.143 ± .004
	Leiden	$.404 \pm .011$	$.470 \pm .016$	$.300 \pm .017$	PubMed*	K-Means	$.595 \pm .001$	$.312 \pm .001$	$.281 \pm .001$	
	Node2Vec	$.452 \pm .002$	$.466 \pm .001$	$.270 \pm .001$		Leiden	$.633 \pm .018$	$.256 \pm .020$	$.245 \pm .033$	
Brain	DynNode2Vec	$.163 \pm .002$	$.049 \pm .001$	$.019 \pm .001$		Node2Vec	$.687 \pm .001$	$.289 \pm .001$	$.312 \pm .001$	
	tNodeEmbed	$.417 \pm .002$	$.434 \pm .001$	$.243 \pm .002$		DynNode2Vec	$.543 \pm .001$	$.192 \pm .001$	$.135 \pm .001$	
	DAEGC	$.414 \pm .010$	$.431 \pm .009$	$.253 \pm .010$		tNodeEmbed	$.673 \pm .001$	$.297 \pm .001$	$.307\pm.001$	
	TGC	$.434 \pm .001$	$.497 \pm .003$	$.288 \pm .003$			DAEGC	$.713 \pm .040$	$.320 \pm .042$	$.339 \pm .065$
	Spectral	.289 ± .001	.008 ± .001	.000 ± .001	- 3		TGC	$.677 \pm .001$	$.254 \pm .002$	$.280\pm.002$
	Leiden	$.400 \pm .013$	$.302 \pm .003$	$.187 \pm .005$			Spectral	.967 ± .001	.940 ± .001	.933 ± .000
	Node2Vec	.466 ± .001	.351 ± .001	.207 ± .001			Leiden	.851 ± .023	.911 ± .008	.843 ± .016
DBLP	DynNode2Vec	.155 ± .002	.006 ± .001	.002 ± .001			Node2Vec	.999 ± .002	.998 ± .004	.998 ± .004
	tNodeEmbed	.451 ± .001	.345 ± .001	.203 ± .001	School	DynNode2Vec	$.200 \pm .004$	$.025 \pm .002$	0.013 ± 0.001	
	DAEGC	$.465 \pm .010$	$.344 \pm .004$	$.219 \pm .004$		tNodeEmbed	.200 ± .002	.025 ± .001	.013 ± .001	
	TGC	.471 ± .001	.355 ± .001	.209 ± .001		DAEGC	.997 ± .006	.994 ± .009	.993 ± .010	
				Commission Commission (1980)	*		TGC	$.997 \pm .001$.994 ± .001	.994 ± .001
						, and a second				

Table 3: Results comparison. Best results in **bold**, second best in *italic*, and highest mean values <u>underlined</u>.

Best results with TGC.

Dataset	Model	ACC	AMI	ARI		Dataset	Model	ACC	AMI	ARI
	Spectral	.389 ± .002	.016 ± .008	.012 ± .006			Spectral	.575 ± .011	.365 ± .023	$.319 \pm .046$
	Leiden	$.525 \pm .033$	$.302 \pm .027$	$.239 \pm .031$			Leiden	$.431 \pm .026$	$.203 \pm .016$	$.140 \pm .027$
	Node2Vec	.646 ± .001	.363 ± .001	.404 ± .001			Node2Vec	$.400 \pm .020$	$.270 \pm .022$	$.171 \pm .026$
arXivAI	DynNode2Vec	.268 ± .001	.001 ± .001	.000 ± .001		Patent	DynNode2Vec	$.354 \pm .038$	$.139 \pm .045$	$.089 \pm .042$
	tNodeEmbed	.673 ± .001	$.299 \pm .001$	$.312 \pm .001$			tNodeEmbed	$.424 \pm .048$	$.248 \pm .024$	$.177 \pm .035$
	DAEGC	OOM	OOM	OOM			DAEGC	$.462 \pm .029$	$.315 \pm .052$	$.271 \pm .052$
	TGC	.646 ± .001	<u>.363 ± .001</u>	<u>.404 ± .001</u>			TGC	.503 ± .019	.329 ± .027	.272 ± .035
	Spectral	.485 ± .001	.498 ± .001	.320 ± .001			Spectral	$.593 \pm .003$	$.162 \pm .008$	$.143 \pm .004$
	Leiden	.404 ± .011	$.470 \pm .016$.300 ± .017	PubMed*	K-Means	$.595 \pm .001$	$.312 \pm .001$	$.281 \pm .001$	
	Node2Vec	$.452 \pm .002$	$.466 \pm .001$	$.270 \pm .001$		Leiden	$.633 \pm .018$	$.256 \pm .020$	$.245 \pm .033$	
Brain	DynNode2Vec	$.163 \pm .002$	$.049 \pm .001$	$.019 \pm .001$		Node2Vec	$.687 \pm .001$	$.289 \pm .001$	$.312 \pm .001$	
	tNodeEmbed	$.417 \pm .002$	$.434 \pm .001$	$.243 \pm .002$		DynNode2Vec	$.543 \pm .001$	$.192 \pm .001$	$.135 \pm .001$	
	DAEGC	$.414 \pm .010$	$.431 \pm .009$	$.253 \pm .010$			tNodeEmbed	$.673 \pm .001$	$.297 \pm .001$	$.307\pm.001$
	TGC	$.434 \pm .001$	$.497 \pm .003$	$.288 \pm .003$			DAEGC	$.713 \pm .040$	$.320 \pm .042$	$.339 \pm .065$
-	Spectral	.289 ± .001	.008 ± .001	.000 ± .001	8		TGC	$.677 \pm .001$	$.254 \pm .002$.280 ± .002
	Leiden	$.400 \pm .013$	$.302 \pm .003$.187 ± .005			Spectral	.967 ± .001	$.940 \pm .001$.933 ± .000
	Node2Vec	$.466 \pm .001$	$.351 \pm .001$	$.207 \pm .001$			Leiden	$.851 \pm .023$	$.911 \pm .008$	$.843 \pm .016$
DBLP	DynNode2Vec	$.155 \pm .002$	$.006 \pm .001$	$.002 \pm .001$			Node2Vec	.999 ± .002	.998 ± .004	.998 ± .004
	tNodeEmbed	$.451 \pm .001$	$.345 \pm .001$	$.203 \pm .001$	School	DynNode2Vec	.200 ± .004	.025 ± .002	.013 ± .001	
	DAEGC	$.465 \pm .010$	$.344 \pm .004$	$.219 \pm .004$		tNodeEmbed	$.200 \pm .002$	$.025 \pm .001$	$.013 \pm .001$	
	TGC	.471 ± .001	.355 ± .001	.209 ± .001		DAEGC	.997 ± .006	.994 ± .009	.993 ± .010	
							TGC	.997 ± .001	.994 ± .001	.994 ± .001

TGC comparable to N2V.

Best results with TGC.

Table 3: Results comparison. Best results in **bold**, second best in *italic*, and highest mean values <u>underlined</u>.

Dataset	Model	ACC	AMI	ARI		Dataset	Model	ACC	AMI	ARI
	Spectral	$.389 \pm .002$.016 ± .008	.012 ± .006			Spectral	.575 ± .011	.365 ± .023	.319 ± .046
	Leiden	$.525 \pm .033$	$.302 \pm .027$	$.239 \pm .031$			Leiden	.431 ± .026	.203 ± .016	.140 ± .027
	Node2Vec	.646 ± .001	.363 ± .001	.404 ± .001			Node2Vec	$.400 \pm .020$	$.270 \pm .022$	$.171 \pm .026$
arXivAI	DynNode2Vec	.268 ± .001	.001 ± .001	.000 ± .001		Patent	DynNode2Vec	$.354 \pm .038$	$.139 \pm .045$	$.089 \pm .042$
	tNodeEmbed	.673 ± .001	.299 ± .001	.312 ± .001			tNodeEmbed	$.424 \pm .048$	$.248 \pm .024$	$.177 \pm .035$
	DAEGC	OOM	OOM	OOM			DAEGC	$.462 \pm .029$	$.315 \pm .052$	$.271 \pm .052$
	TGC	.646 ± .001	<u>.363 ± .001</u>	<u>.404 ± .001</u>			TGC	.503 ± .019	.329 ± .027	.272 ± .035
	Spectral	.485 ± .001	.498 ± .001	.320 ± .001			Spectral	$.593 \pm .003$	$.162 \pm .008$	$.143 \pm .004$
	Leiden	.404 ± .011	.470 ± .016	.300 ± .017	, 	K-Means	$.595 \pm .001$	$.312 \pm .001$	$.281 \pm .001$	
	Node2Vec	.452 ± .002	.466 ± .001	.270 ± .001		Leiden	.633 ± .018	$.256 \pm .020$.245 ± .033	
Brain	DynNode2Vec	$.163 \pm .002$.049 ± .001	.019 ± .001		PubMed*	Node2Vec	.687 ± .001	.289 ± .001	.312 ± .001
	tNodeEmbed	$.417 \pm .002$	$.434 \pm .001$	$.243 \pm .002$		1 ubivieu	DynNode2Vec	$.543 \pm .001$.192 ± .001	$.135 \pm .001$
	DAEGC	$.414 \pm .010$	$.431 \pm .009$	$.253 \pm .010$			tNodeEmbed	$.673 \pm .001$.297 ± .001	.307 ± .001
	TGC	$.434 \pm .001$	$.497 \pm .003$	$.288\pm.003$			DAEGC	<u>.713 ± .040</u>	.320 ± .042	.339 ± .065
	Spectral	.289 ± .001	.008 ± .001	.000 ± .001			TGC	.677 ± .001	.254 ± .002	$.280 \pm .002$
	Leiden	$.400 \pm .013$	$.302 \pm .003$.187 ± .005			Spectral	$.967 \pm .001$	$.940 \pm .001$	$.933 \pm .000$
	Node2Vec	.466 ± .001	$.351 \pm .001$	$.207 \pm .001$			Leiden	$.851 \pm .023$	$.911 \pm .008$	$.843 \pm .016$
DBLP	DynNode2Vec	.155 ± .002	$.006 \pm .001$	$.002 \pm .001$			Node2Vec	.999 ± .002	.998 ± .004	.998 ± .004
	tNodeEmbed	$.451 \pm .001$	$.345 \pm .001$	$.203 \pm .001$		School	DynNode2Vec	.200 ± .004	.025 ± .002	.013 ± .001
	DAEGC	$.465 \pm .010$	$.344 \pm .004$.219 ± .004	_		tNodeEmbed	$.200 \pm .002$	$.025 \pm .001$	$.013 \pm .001$
	TGC	.471 ± .001	.355 ± .001	.209 ± .001			DAEGC	.997 ± .006	.994 ± .009	.993 ± .010
							TGC	.997 ± .001	.994 ± .001	.994 ± .001

Methods outperforming TGC.

TGC comparable to N2V.

Best results with TGC.

Table 3: Results comparison. Best results in **bold**, second best in *italic*, and highest mean values <u>underlined</u>.

Transductive vs. inductive

Most GNNs for CD are evaluated in a transductive learning setting only

- This is mostly due to a lack of datasets for the task
 - Temporal graph data
 - With node-level features
 - With community ground truths

According to some authors, this restricts evaluation to an "overfitting competition"

Transductive vs. inductive

- Training set.
- Validation set.
- - Test set.

Figure: Graph learning settings and node-level splits.

Transductive vs. inductive

We therefore were interested in expanding our evaluation to an inductive setting,
 but this was only possible for a single dataset we constructed from PubMed data:

Dataset	Model	ACC	AMI	ARI
	K-Means	$.682 \pm .001$	$.235 \pm .002$	$.272 \pm .001$
PubMed	DAEGC	$.690 \pm .010$	$.257 \pm .012$.285 ± .020
	TGC	$.678 \pm .002$	$.221 \pm .005$	$.254 \pm .002$

Table 4: Results comparison for inductive learning setting.

Best results in **bold**, second best in *italic*, and highest mean values <u>underlined</u>.

 Since the node features for the other datasets we used were obtained by the original authors by pretraining with Node2Vec, we could <u>not</u> prevent information leakage for them

Results breakdown

GNNs yielded the best possible results only on one out of six datasets here evaluated

- There is still a large room for improvements on neural methods for community detection
- Although useful for many tasks, they are still not the de-facto state of the art for this task

- We need **more research**: more datasets, models, and interest in neural community detection
 - Especially in attributed temporal graphs, due to the detectability threshold of communities

Concluding remarks

- Research opportunities: network scientists and ML researchers both agree that the detectability threshold of communities can be improved by exploiting temporality/features
- A GNN-based model may be one of the best candidates for this goal!

- Such a model would likely benefit many real-world applications, ranging from e-commerce to environmental studies, from traffic prediction to research in social network dynamics.
- We aim to continue with our research in this direction, especially for inductive learning

Summary: Our contributions

Experimental evaluation of algorithmic and neural node clustering methods
 (8 models, 6 real-world datasets, transductive + inductive learning when possible)

PubMedTemporal: newly released temporal edge data and node-level temporal split (available from Zenodo/GitHub and soon from within PyTorch Geometric)

Code reproducibility: available from GitHub to foster further research in the area

Acknowledgements

A huge thank you to the following research groups for their valuable support:

High Performance Computing laboratory of ISTI-CNR (Pisa, Italy)

Department of Network and Data Science of the CEU (Vienna, Austria)

Inverse Complexity Lab of the IT:U (Linz, Austria)

Thank you!

Code repository:

github.com/nelsonaloysio/gnnet24

