
Deep Community Detection in Attributed Temporal Graphs:
Experimental Evaluation of Current Approaches

Nelson A. R. A. Passos
University of Pisa

Pisa, Italy
National Research Council

Pisa, Italy
nelson.reis@phd.unipi.it

Emanuele Carlini
National Research Council

Pisa, Italy
emanuele.carlini@isti.cnr.it

Salvatore Trani
National Research Council

Pisa, Italy
salvatore.trani@isti.cnr.it

Abstract
Recent advances in network representation learning have sparked
renewed interest in developing strategies for learning on spatio-
temporal signals, crucial for applications like traffic forecasting,
recommendation systems, and social network analysis. Despite the
popularity of Graph Neural Networks for node-level clustering,
most specialized solutions are evaluated in transductive learning
settings, where the entire graph is available during training, leaving
a significant gap in understanding their performance in inductive
learning settings. This work presents an experimental evaluation
of community detection approaches on temporal graphs, compar-
ing traditional methods with deep learning models geared toward
node-level clustering.We assess their performance on six real-world
datasets, focused on a transductive setting and extending to an in-
ductive setting for one dataset. Our results show that deep learning
models for graphs do not consistently outperform more established
methods on this task, highlighting the need for more effective ap-
proaches and comprehensive benchmarks for their evaluation.

CCS Concepts
•Mathematics of computing→Graph theory; •Computer sys-
tems organization→Neural networks; • Information systems
→ Clustering and classification; • Computing methodologies
→ Unsupervised learning.

Keywords
Graph Neural Networks, Node Clustering, Temporal Graphs.

ACM Reference Format:
Nelson A. R. A. Passos, Emanuele Carlini, and Salvatore Trani. 2024. Deep
Community Detection in Attributed Temporal Graphs: Experimental Eval-
uation of Current Approaches. In Proceedings of the 3rd GNNet Workshop:
Graph Neural Networking Workshop (GNNet ’24), December 9–12, 2024, Los
Angeles, CA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3694811.3697822

1 Introduction
The task of dividing a network into groups is crucial for under-
standing its structure and dynamics and is a well-defined research

This work is licensed under a Creative Commons Attribution
International 4.0 License.

GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1254-8/24/12
https://doi.org/10.1145/3694811.3697822

topic in Network Science [28]. It has also gained traction in the
Machine Learning community in recent years, which has ensued
an exploration of the use of encoders and deep learning models for
network representation, such as Graph Neural Networks (GNNs).
However, even though GNNs may be considered to constitute the
state of the art for node-level classification and clustering tasks [37],
there is still comparatively little research and a lack of rigorous
evaluation on employing them on dynamic graphs [22] — in which
nodes, edges, and features may altogether change over time. Real-
world networks are generally dynamic in nature, but most of the
existing research on partitioning them has traditionally focused on
static graphs. Moreover, the majority of studies carrying mesoscale
network analyses still do not employ algorithms or models designed
for temporal graphs, relying instead on their static counterparts,
due to widespread availability and lowered computational costs.

This paper aims to shed some light on the matter, by evaluating
the performance of distinct approaches for clustering nodes. Our
experiment considers six real-world graph datasets from different
domains and scales, and eight different baselines for performance
comparison. We include established methods for community de-
tection, network representation, and deep learning on graphs, the
latter geared specifically toward the task of node clustering, i.e.,
“deep” community detection. A pretraining stage is initially em-
ployed to obtain node features by random walk sampling, followed
by training with models that consider the learned embeddings and
the graph’s topology. We further extend our evaluation to inductive
learning on a single attributed temporal graph with readily avail-
able node-level features, to verify the models’ generalization power
on unseen nodes. Although we focus on the task of node-level clus-
tering, we highlight that similar models may potentially be used to
other downstream tasks, e.g., graph classification, especially those
that may benefit from learning the network’s evolution over time.

Our contributions therefore are the following:

• We perform a transductive learning evaluation of eight dis-
tinct approaches for node-level clustering on graphs, consid-
ering six real-world datasets of different scales and domains.

• We extend our evaluation when possible to an inductive
learning setting, with the goal of understanding how they
perform in terms of generalization power on unseen data.

• We release a dynamic graph dataset based on PubMed [3], a
popular citation network primarily used in node classifica-
tion tasks, now available with edge-level temporal data.

This work is structured as follows. Section 2 offers a brief
overview of related work, especially on deep learning models for

https://orcid.org/0000-0003-1869-2976
https://orcid.org/0000-0003-3643-5404
https://orcid.org/0000-0001-6541-9409
https://doi.org/10.1145/3694811.3697822
https://doi.org/10.1145/3694811.3697822
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3694811.3697822

GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA Nelson A. R. A. Passos, Emanuele Carlini, and Salvatore Trani

static and temporal graphs. Section 3 formalizes the research prob-
lem, presents the models and baselines considered, and describes
the datasets and metrics used in our experiments. Section 4 dis-
cusses our experimental results based on the models’ performance.
Lastly, Section 5 offers some closing thoughts and outlines the
research directions we aim to explore in the near future.

2 Related Work
In the context of networks, a cluster, module, or community is
broadly defined as a group of objects densely connected among
themselves, but sparsely connected to other groups [28]. The most
widely adopted methods for their detection nowadays rely on ag-
glomerative strategies that optimize some objective function to
maximize the quality of the partitioning, of which the most com-
mon is modularity [36]; statistical inference, which estimate the
data’s likelihood through probabilistic generative (e.g., Bayesian)
processes, such as the Stochastic Block Model [31]; network repre-
sentation learning techniques, that map nodes into a real dimen-
sional space by employing some sort of encoder, mostly focused on
the Skip-Gram model [25]; and deep learning models designed to
operate directly on relational data, such as Graph Neural Networks
(GNNs), discussed in more detail next. Other methods not covered
in this work include divisive strategies; statistical physics models;
matrix factorization techniques; information-theoretic approaches;
label and belief propagation; and other additional, mixed strategies.
We direct the reader to [5] for a review on some of these methods.

Deep learning on graphs. Most recent advances on graph repre-
sentation have been achieved by employing deep learning models
that operate directly on graphs. In a paradigm known as message
passing [8], GNNs obtain node embeddings H by recursively com-
bining invariant to permutation their and their neighbors’ features,
i.e., ℎ𝑖 = 𝜙

(
𝑥𝑖 ,⊕𝑗∈N𝑖

𝜓 (𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑒)
)
, where N are neighbors, ⊕ is

an aggregation function, and 𝜙 and𝜓 are differentiable functions
that learn representations from node and edge features 𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑒 .

The learning process in this framework is usually based on gradi-
ent descent, in which weights are updated according to the deriva-
tives computed in the last step, while the loss is minimized until a
predetermined step or an approximate fixed point solution. Employ-
ing multiple layers allows considering higher-order information
beyond the node’s immediate neighborhood, and the feature maps
may be downsampled to reduce their computational cost. Lastly,
local (node-level) or global (graph-level) pooling operations may
be used to select, reduce, and connect [9] or readout embeddings
with permutation-equivariant or permutation-invariant functions
— allowing them to be used for a variety of downstream tasks, such
as node clustering, link prediction, and graph classification.

Many models following this paradigm have since been proposed,
extending it to employmore sophisticated convolutional operations,
based on the graph’s spectral or spatial properties [14, 17] proper-
ties; adapting autoencoders [16] to graphs, in which a decoder and
an encoder function are used to minimize the loss of reconstruct-
ing their topology into the original form; introducing the use of
attention mechanisms [1, 38] that weigh the importance of nodes
and features differently according to some criteria; considering
𝑘−tuples of nodes (subgraphs) for higher-order message passing
[26]; or by considering the graph’s temporal dynamics, which we

further elaborate next. For a comprehensive introduction to GNNs
and a survey covering the models mentioned herein, see [19, 41].

Deep learning on temporal graphs. GNNs for dynamic graphs
rely on the same paradigm as staticmodels to learn on non-Euclidean
data, but extend them to consider the temporal dimension of the
graph, either by taking snapshots [29] or sequences of events
[11, 33] as input. In general, recurrent mechanisms are used to
progressively learn on spatio-temporal signals: such as Long Short-
Term Memory (LSTM) [6], in which cell states contain three gates
that control the amount of information to be discarded (forget gate),
added (input gate), and transferred (output gate) to the next layer,
or Gated Recurrent Units (GRUs) [2], a simplification of LSTM that
maintains a hidden state only, controlled by a reset and an update
gate. Alternatively, models may employ variational autoencoders
[12], attention-wise [34, 42], or temporal decay functions [21] in-
stead — such as the Hawkes process [15], in which past events have
a (usually exponentially) decreasing effect on future probabilities,
conditioned by the intensity of previously observed events.

Similarly to static GNNs, however, the design of temporal GNNs
is mostly based on empirical intuition, heuristics, and experimental
trial and error [43], and there is little theoretical understanding
of their limitations beyond the sensible statement that their ex-
pressiveness is likely limited in the same regards [26]. Therefore,
despite the recent advances in the field and its potential relevance
in diverse application domains, the task of node classification or
clustering of dynamic graphs is still an open research question, and
the evaluation of their performance on node-level clustering an
interesting and relevant objective. For a recent survey on temporal
GNNs, including a proposed taxonomy and a discussion on their
limitations and research opportunities, we direct the reader to [22].

3 Methodology
3.1 Research Question
Our research question concerns the unsupervised node-level clus-
tering of attributed temporal graphs: how efficiently the current
state-of-the-art models learn node representations of a temporal graph
and partition them into groups? In this work, we compare different
approaches to better understand how well they perform in this task,
compared to distinct commonly employed methods as baselines.

A temporal graph can be defined as G B {V, E, 𝑋V , 𝑋E }, in
whichV and E are the sets of all temporal nodes and edges, and
𝑋V ∈ R and 𝑋E ∈ R are (optional) node and edge-level attribute
features. A temporal graph may be computationally represented in
different ways, leading to distinct algorithmic solutions [22]. For
instance, it may be represented as a sequence of snapshots, i.e.,
G𝑆 B {𝐺1, . . . ,𝐺𝑡 | 𝑡 ∈ N}, where 𝐺𝑡 B {𝑉 , 𝐸, 𝑋𝑉 , 𝑋𝐸 } is a static
graph at time 𝑡 ; or alternatively, as a sequence of edge-level events,
i.e., G𝐸 B {∀𝑒 ∈ E : {𝑢, 𝑣, 𝑡, 𝛿, 𝑥𝑢 , 𝑥𝑣, 𝑥𝑒 } | 𝑡 ∈ R+}, where 𝑢 and 𝑣

are temporal nodes, 𝑡 is the time of the event, 𝛿 ∈ {0, 1} constitutes
an edge addition or removal, and 𝑥𝑢 , 𝑥𝑣 , 𝑥𝑒 are node-level and edge-
level features. Note that snapshot-based and event-based temporal
graphs are also found in the literature as discrete-time temporal
graphs (DTTG) and continuous-time temporal graphs (CTTG).

The goal of a model (algorithm) is therefore learning (employ-
ing) a function that efficiently maps nodes into groups, that is,

Deep Community Detection in Attributed Temporal Graphs: Experimental Evaluation of Current Approaches GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA

−→
𝑓 (G)

−→
𝑓 ′ (H)

G H C

Figure 1: Clustering node representations. A function 𝑓 is ap-
plied to a temporal graph G to learn node embeddingsH ∈ R𝑑 , here
illustrated as snapshots and a 𝑑 = 3 dimensional space, respectively.
A second function 𝑓 ′ obtains the resulting node clusters 𝐶 from it.

𝑓 : G → 𝐶 B {𝐶𝑛 ⊆ V | 𝑛 ≥ 1 }, in which 𝐶 is the set of all
clusters (communities) in the graph. It may consider the graph’s
topology, node and edge features, and temporal dynamics in order
to produce subsets of nodes that best represents its underlying
mesoscale structures. In the network representation learning par-
adigm, commonly two functions are employed instead: the first
encodes nodes into a real 𝑑−dimensional space, and the second
divides them into groups based on their latent representations in an
unsupervised manner (e.g., K-Means1), as illustrated in Figure 1. Al-
ternatively, GNN-based models may also employ a pooling strategy
in order to obtain the final clusters from the learned embeddings.

3.2 Models
We have selected eight distinct models for comparison. Our focus
was primarily on their relevance, widespread adoption, presence
as baselines in the literature, and implementation availability us-
ing open source frameworks [4, 30]. We compare some of their
characteristics in Table 1 and briefly describe each one next.

Model Input Topology Features Temporal

K-Means 𝑋𝑉 ✓
Spectral Clustering 𝐺 ✓
Leiden 𝐺 ✓

Node2Vec 𝐺 ✓
DynNode2Vec G𝑆 ✓ ✓
tNodeEmbed G𝑆 ✓ ✓

DAEGC 𝐺 ✓ ✓
TGC G𝐸 ✓ ✓ ✓

Table 1: Models. Table divided into three groups: general algo-
rithms, shallow encoders for graph learning, and GNN models.
Input: 𝑋𝑉 , 𝐺 , G𝑆 and G𝐸 are node-level features, static graphs,
snapshot-based and event-based temporal graphs, respectively.

K-Means2 is a clustering algorithm that partitions elements into
𝑘 clusters based on their positions in the feature space. Spectral
1For evaluation purposes, it is common to use K-Means to compare the separability of
high-dimensional node embeddings generated by distinct models. In other application
scenarios, more refined functions may be employed instead, allowing to fulfill different
requirements — such as that of producing overlapping (mixed membership) clusters.
2Note that we employed K-Means solely as a baseline to allow comparing the separa-
bility of node embeddings obtained by each model — except in cases when clustering
is performed directly on the graph, instead of its learned node-level representations.

Clustering is an algorithm to partition nodes into 𝑘 clusters by
eigendecomposition of the graph’s Laplacian. Leiden [36] is an
optimization algorithm based on the graph’s topology; we employ
modularity as a quality function. Node2Vec [10] is a network rep-
resentation learning algorithm that employs a shallow encoder to
map node similarities based on their co-occurrences in random
walks. DynNode2Vec [23] is an extension of Node2Vec that sam-
ples a sequence of temporal graph snapshots, with initial weights
defined by the previously learned embeddings. tNodeEmbed [35]
similarly considers graph snapshots, but employs matrix approxi-
mations to sequentially align their node embeddings. DAEGC [40]
is a static graph autoencoder that employs a 2-layer graph atten-
tional network to learn node embeddings, based on their first- and
second-order neighborhoods, and minimizes a joint reconstruction
and clustering loss. TGC [21] is a temporal graph autoencoder that
employs the Hawkes function to learn node embeddings, in which
the importance of their features decay as a function of time elapsed.

As far as we are aware, TGC is the only GNN model so far
released that is specifically designed for the task of node clustering
in attributed temporal graphs [21, 22]. While it has recently been
shown to outperform most baselines, we also chose to include
DAEGC for being an autoencoder-based architecture that is also
geared toward node clustering in attributed static graphs, so to
allow comparing the former with a similar approach, but which
does not exploit a network’s temporal dynamics during learning.

3.3 Datasets
We have considered six publicly available real-world networks to
evaluate the models’ performance on node-level clustering tasks.

Dataset |𝑽 | |𝑬 | |E | 𝑺 𝒅𝑽 𝒚 𝒕

arXivAI 69 854 696 819 696 819 244 128 5 27
Brain 5 000 883 207 1 007 744 1 128 10 12
DBLP 28 085 150 571 222 169 113 128 10 27
Patent 12 214 41 916 41 916 5 128 6 891
PubMed★ 19 717 44 324 44 324 1 500 3 42
School 327 5 818 188 508 1 128 9 7 375

Table 2: Datasets. |𝑉 | nodes, |𝐸 | edges, |E | temporal edges, 𝑆
subgraphs (connected components), 𝑑𝑉 -dimensional node features,
𝑦 classes, and 𝑡 time steps. A star (★) marks datasets with original
node features, otherwise obtained by pretraining with Node2Vec.

We display their main characteristics in Table 2. arXivAI [20] is
a citation network of papers in Artificial Intelligence. Brain [32] is
a network of human brain regions and their functional connectivity.
DBLP [45] is a co-author network in Computer Science [20].Patent
[13] is a network of patents from the US Patent Office. PubMed
[3] is a citation network of papers in Medicine, with most relevant
terms in their abstracts included as node-level features. We queried
the official API to obtain the publication dates of the papers by
their IDs, and added it as an edge-level attribute considering yearly
intervals — resulting in a graph of the same order, size, and feature
dimensionality as in [44], itself based on [27]. Lastly, School [24]
is a network of interactions between students in a high school. All

GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA Nelson A. R. A. Passos, Emanuele Carlini, and Salvatore Trani

datasets are publicly available and used in the literature to evaluate
the performance of models on node-level prediction tasks [21].

Following the same procedure as [21], node features for the
unattributed graphs (all in Table 2, except PubMed) were generated
with Node2Vec [10], with 𝑝 and 𝑞 set to 1 and the number of walks
and walk length set to 10 and 80, respectively. All graphs were
first preprocessed to remove isolated nodes and self-loops, and the
node embeddings were normalized to have zero mean and unit
variance. The resulting datasets were used to evaluate the models
in a transductive learning setting, in which the whole graph is
available during message passing and the learned representations
are used to predict the labels of the nodes in the test set only.

In contrast, our evaluation considering an inductive learning
setting was herein restricted to PubMed, being the only dataset
with “original”, i.e., readily available node-level features. Note that
this limitation is due to avoid the possibility of information leakage
during learning, as considering node-level features coming from,
e.g., Node2Vec would imply instead that nodes supposed to be
unseen during training might be sampled during the random walks.

3.4 Evaluation Metrics
The following metrics were chosen to evaluate the performance of
the selected models, guided by their robustness for clustering tasks:

• ACC: accuracy or proportion of correctly classified nodes;
we use the Kuhn-Munkres algorithm for label assignments.

• AMI [39]: AdjustedMutual Information, based on themutual
information between true and predicted clusters. In contrast
to its normalized version, this metric is adjusted by chance.

• ARI [39]: Adjusted Rand Index, based on the number of pairs
of elements assigned to the same or distinct groups.

The three metrics are commonly used in the literature to evaluate
multi-class clustering tasks and allow their systematic comparison.
We note that we have omitted the commonly employed F1-score
due to space constraints and a high correlation (0.96) with ACC.

4 Experimental Results
We present our experimental results for the models, datasets and
metrics described in previous sections. Each model was run 5 times
with fixed seeds to account for randomness and allow reproducible
results. Table 3 reports their average performance in a transductive
learning setting, and Table 4 in the inductive learning setting. All
models were trained on a single NVIDIA A100 GPU (80 GB).

In a transductive learning setting, considering the metrics
adjusted for chance and their reported uncertainty, we observe that
the GNN-based solutions we experimented with — TGC (temporal)
and DAEGC (static) — consistently yielded the best performance
results for only one out of six datasets we selected for evaluation,
i.e., DBLP. On the 𝑃𝑢𝑏𝑀𝑒𝑑 dataset, DAEGC reported the highest
mean, but also the highest variability among all models and metrics.
In all other cases, both were either outperformed (𝐵𝑟𝑎𝑖𝑛, 𝑃𝑎𝑡𝑒𝑛𝑡) or
yielded comparable results (𝑎𝑟𝑋𝑖𝑣𝐴𝐼 , 𝑆𝑐ℎ𝑜𝑜𝑙) to baselines, which
implies that current GNNs may still underperform in unsupervised
node clustering tasks when compared to more established tech-
niques — especially in the case of unattributed graphs, in which
their expressiveness is limited by the lack of node-level features.

Although a pretraining stage with Node2Vec was employed to

add features to nodes in unattributed graphs, i.e., all but PubMed,
the GNNs’ expressiveness may still have been hindered by the fact
that their features were initially generated by exploiting only the
graph’s topology during walk sampling — which, in turn, may not
have been able to capture well the underlying mesoscale structures
of more complex networks. For example, on the larger-scale arXivAI

Dataset Model ACC AMI ARI

arXivAI

Spectral .389 ± .002 .016 ± .008 .012 ± .006
Leiden .525 ± .033 .302 ± .027 .239 ± .031

Node2Vec .646 ± .001 .363 ± .001 .404 ± .001
DynNode2Vec .268 ± .001 .001 ± .001 .000 ± .001
tNodeEmbed .673 ± .001 .299 ± .001 .312 ± .001

DAEGC OOM OOM OOM
TGC .646 ± .001 .363 ± .001 .404 ± .001

Brain

Spectral .485 ± .001 .498 ± .001 .320 ± .001
Leiden .404 ± .011 .470 ± .016 .300 ± .017

Node2Vec .452 ± .002 .466 ± .001 .270 ± .001
DynNode2Vec .163 ± .002 .049 ± .001 .019 ± .001
tNodeEmbed .417 ± .002 .434 ± .001 .243 ± .002

DAEGC .414 ± .010 .431 ± .009 .253 ± .010
TGC .434 ± .001 .497 ± .003 .288 ± .003

DBLP

Spectral .289 ± .001 .008 ± .001 .000 ± .001
Leiden .400 ± .013 .302 ± .003 .187 ± .005

Node2Vec .466 ± .001 .351 ± .001 .207 ± .001
DynNode2Vec .155 ± .002 .006 ± .001 .002 ± .001
tNodeEmbed .451 ± .001 .345 ± .001 .203 ± .001

DAEGC .465 ± .010 .344 ± .004 .219 ± .004
TGC .471 ± .001 .355 ± .001 .209 ± .001

Patent

Spectral .575 ± .011 .365 ± .023 .319 ± .046
Leiden .431 ± .026 .203 ± .016 .140 ± .027

Node2Vec .400 ± .020 .270 ± .022 .171 ± .026
DynNode2Vec .354 ± .038 .139 ± .045 .089 ± .042
tNodeEmbed .424 ± .048 .248 ± .024 .177 ± .035

DAEGC .462 ± .029 .315 ± .052 .271 ± .052
TGC .503 ± .019 .329 ± .027 .272 ± .035

PubMed★

Spectral .593 ± .003 .162 ± .008 .143 ± .004
K-Means .595 ± .001 .312 ± .001 .281 ± .001
Leiden .633 ± .018 .256 ± .020 .245 ± .033

Node2Vec .687 ± .001 .289 ± .001 .312 ± .001
DynNode2Vec .543 ± .001 .192 ± .001 .135 ± .001
tNodeEmbed .673 ± .001 .297 ± .001 .307 ± .001

DAEGC .713 ± .040 .320 ± .042 .339 ± .065
TGC .677 ± .001 .254 ± .002 .280 ± .002

School

Spectral .967 ± .001 .940 ± .001 .933 ± .000
Leiden .851 ± .023 .911 ± .008 .843 ± .016

Node2Vec .999 ± .002 .998 ± .004 .998 ± .004
DynNode2Vec .200 ± .004 .025 ± .002 .013 ± .001
tNodeEmbed .200 ± .002 .025 ± .001 .013 ± .001

DAEGC .997 ± .006 .994 ± .009 .993 ± .010
TGC .997 ± .001 .994 ± .001 .994 ± .001

Table 3: Transductive evaluation. We mark the best result for
each dataset considering their uncertainty in bold, the second best
in italic, and out-of-memory errors as OOM. Highest mean values
are underlined. A star (★) marks datasets with original node-level
features, for which K-Means is included as an additional baseline.

Deep Community Detection in Attributed Temporal Graphs: Experimental Evaluation of Current Approaches GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA

dataset, the performance of TGC matched that of plain Node2Vec
— meaning the former was not able to further improve the node
embeddings previously obtained by the latter. On the other hand,
DAEGC resulted in an out-of-memory error due to its implementa-
tion relying on dense matrices to compute the reconstruction loss,
therefore rendering it unfeasible for larger networks. We also note
that, although tNodeEmbed achieved the highest accuracy on the
same dataset, its performance was suboptimal compared to both
Node2Vec and TGC when considering the other metrics.

Most interestingly, for the Brain and Patent datasets, the best
results were instead obtained by simply employing spectral cluster-
ing on the graph’s Laplacian. These results are worth highlighting
because spectral techniques are among the methods recognized
to be asymptotically optimal down to the detectability threshold
of communities in graphs [18], considering solely their topology
— which may be further improved by models exploiting a graph’s
attributes and temporal dynamics as well [7]. For the arXivAI and
DBLP datasets, in contrast, the algorithm was one of the most
underperforming solutions. This may be explained by the high
number of connected components (disjoint subgraphs) in both net-
works, described in Table 2, which is expected to impact the graph’s
partitioning, as it depends on its matrix’s eigendecomposition —
alternatively, employing it on the largest connected component
only may allow to better assess its performance in such cases.

While we have chosen to report the results obtained in our tests
with DynNode2Vec, we note that its worse performance might be
due to a lack of hyperparameter tuning, as we chose to employ the
same set of hyperparameters used for Node2Vec and tNodeEmbed,
to allow a direct comparison among the three models for network
representation learning. It is also likely that the amount of snapshots
with very few nodes available for walk sampling in some datasets
has negatively impacted the expressiveness of the obtained node-
level embeddings. In this case, its performance may be further
improved by utilizing a different strategy to split the graph into
snapshots — e.g., by sequentially merging subsequent snapshots or
selecting a predefined time interval to construct them instead.

Meanwhile, the results from tNodeEmbed — which employs a
similar, but more sophisticated approach to combine temporal node
embeddings, by solving the closest orthogonal approximation prob-
lem for each sequential pair of graph snapshots — did not display
the same limitation, except on the School dataset, in which both
models performed poorly. Their worsening performance is possi-
bly due to the continuous-time temporal dynamics of the graph
resulting in a very large number of snapshots with few nodes and
edges, as observed in Table 2. Given that plain Node2Vec’s per-
formance considering the same dataset as a static graph was the
best among all models, it is likely that selecting an arbitrary time
interval to construct the snapshots may potentially contribute to
improve tNodeEmbed’s efficiency and effectiveness, as discussed
for DynNode2Vec. Overall, these results highlight how model se-
lection also depends on the choice of representing a network as
a static, snapshot-based, or event-based temporal graph, and that
the choice of the best approach may be highly dependent on the
dataset’s characteristics — although, given the apparent benefits
and potential pitfalls of considering the network’s temporal evolu-
tion for SkipGram-based encoders, a one-size-fits-all strategy that
is universally optimal for all datasets seems unlikely at first.

Dataset Model ACC AMI ARI

PubMed
K-Means .682 ± .001 .235 ± .002 .272 ± .001
DAEGC .690 ± .010 .257 ± .012 .285 ± .020
TGC .678 ± .002 .221 ± .005 .254 ± .002

Table 4: Inductive evaluation. We mark the best results in the
test set in bold and italic, and underline the highest mean values.

Lastly, our evaluation in an inductive learning setting was
restricted to a single dataset due to the constraints previously dis-
cussed in Section 3.3. We employed a temporal split of approxi-
mately 60%/20%/20% nodes for the train, validation, and test sets,
respectively, with each set generated by sequentially aggregating
snapshots, so to guarantee that the train and validation sets would
not include any information from future nodes. The validation set
was used for hyperparameter tuning and early stopping only, and
the test set to assess the model’s performance afterwards.

We observe that both DAEGC and K-Means achieved better
metrics than TGC in this setting. We initially consider this may be
due to the temporal nature of the dataset: the dynamics of citation
networks are overall very simple, which may hinder the extent to
which amodel can effectively exploit this information to improve its
learned representations. Moreover, all models were less performant
than in a transductive setting when evaluated on metrics adjusted
by chance, althoughmore tests would be necessary to compare their
efficiency on different datasets and better understand howwell they
generalize to unseen nodes in different application scenarios.

5 Conclusion
Recent trends in graph research with machine learning show an in-
creasing focus on dynamical graphs. In this paper, we compared the
performance of various models to assess the effectiveness of current
state-of-the-art methods for node clustering. Our results showed
that, although generally understood in the literature as the current
state of the art, GNN-based architectures introduced specifically
for node-level clustering may still underperform when compared
to more established approaches, especially on unattributed graphs.
We argue there is still considerable margin for improvement in
this area, such as further investigations on how to better exploit
the temporal dynamics of a graph to learn more expressive node
representations. Likewise, a better understanding of how GNNs
compare to optimal approaches w.r.t. the detectability threshold of
communities is highly desired, as well as further tests to evaluate
their performance considering an inductive learning setting. In the
near future, we aim to explore these topics and related questions
in the context of node-level clustering of temporal graphs, and to
propose solutions to improve their benchmarking using synthetic
graphs with node-level features and known community structures.

Acknowledgments
We thank the members of the Inverse Complexity Lab and the De-
partment of Network and Data Science at the Central European
University, Vienna, for their guidance and support during the au-
thor’s stay in their Doctoral Support Program, at which time this
paper was written. We also thank the anonymous reviewers for
their valuable input and welcomed suggestions during its review.

GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA Nelson A. R. A. Passos, Emanuele Carlini, and Salvatore Trani

References
[1] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph Atten-

tion Networks? arXiv:2105.14491 [cs.LG]
[2] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In 2014 Conference on Empirical Methods in Natural Language Processing EMNLP.
Association for Computational Linguistics, 1724–1734. https://doi.org/10.3115/
v1/D14-1179

[3] Nelson Aloysio Reis de Almeida Passos, Emanuele Carlini, and Salvatore Trani.
2024. PubMed-Temporal: a dynamic graph dataset with node-level features.
https://doi.org/10.5281/zenodo.13932076

[4] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[5] Santo Fortunato. 2010. Community Detection in Graphs. Physics Reports 486, 3-5
(2 2010), 75–174. https://doi.org/10.1016/j.physrep.2009.11.002

[6] F.A. Gers, J. Schmidhuber, and F. Cummins. 1999. Learning to forget: continual
prediction with LSTM. In Ninth International Conference on Artificial Neural
Networks ICANN, Vol. 2. 850–855. https://doi.org/10.1049/cp:19991218

[7] Amir Ghasemian, Pan Zhang, Aaron Clauset, Cristopher Moore, and Leto Peel.
2016. Detectability Thresholds and Optimal Algorithms for Community Structure
in Dynamic Networks. Physical Review X 6, 3 (July 2016). https://doi.org/10.
1103/physrevx.6.031005

[8] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. In 34th International
Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML’17).
JMLR.org, 1263–1272.

[9] Daniele Grattarola, Daniele Zambon, Filippo Maria Bianchi, and Cesare Alippi.
2022. Understanding Pooling in Graph Neural Networks. IEEE Transactions on
Neural Networks and Learning Systems (2022), 1–11. https://doi.org/10.1109/
TNNLS.2022.3190922

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In 22nd ACM SIGKDD. ACM. https://doi.org/10.1145/2939672.2939754

[11] Jin Guo, Zhen Han, Su Zhou, Jiliang Li, Volker Tresp, and Yuyi Wang. 2022.
Continuous Temporal Graph Networks for Event-Based Graph Data. In DLG4NLP
2022. Association for Computational Linguistics. https://doi.org/10.18653/v1/
2022.dlg4nlp-1.3

[12] Ehsan Hajiramezanali, Arman Hasanzadeh, Nick Duffield, Krishna R Narayanan,
Mingyuan Zhou, and Xiaoning Qian. 2020. Variational Graph Recurrent Neural
Networks. arXiv:1908.09710 [cs.LG]

[13] Bronwyn Hall, Adam Jaffe, and Manuel Trajtenberg. 2001. The NBER Patent
Citation Data File: Lessons, Insights and Methodological Tools. https://doi.org/10.
3386/w8498

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Advances in Neural Information Processing Systems,
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc.

[15] Alan G. Hawkes. 1971. Point Spectra of Some Mutually Exciting Point Processes.
Journal of the Royal Statistical Society Series B: Statistical Methodology 33, 3 (Oct.
1971), 438–443. https://doi.org/10.1111/j.2517-6161.1971.tb01530.x

[16] Thomas N Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. NIPS
Workshop on Bayesian Deep Learning (2016).

[17] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR. arXiv:1609.02907 [cs.LG]

[18] Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman, Allan Sly,
Lenka Zdeborová, and Pan Zhang. 2013. Spectral redemption in clustering sparse
networks. Proceedings of the National Academy of Sciences 110, 52 (Nov. 2013),
20935–20940. https://doi.org/10.1073/pnas.1312486110

[19] Pan Li and Jure Leskovec. 2022. Graph Neural Networks: Foundations, Frontiers,
and Applications. Springer Singapore, Singapore.

[20] Meng Liu, Ke Liang, Yue Liu, Siwei Wang, Sihang Zhou, and Xinwang Liu.
2023. arXiv4TGC: Large-Scale Datasets for Temporal Graph Clustering.
arXiv:2306.04962 [cs.AI] https://arxiv.org/abs/2306.04962

[21] Meng Liu, Yue Liu, Ke Liang, Wenxuan Tu, Siwei Wang, Sihang Zhou, and
Xinwang Liu. 2024. Deep Temporal Graph Clustering. In The 12th International
Conference on Learning Representations.

[22] Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini, Bruno Lepri,
Pietro Lio, Franco Scarselli, and Andrea Passerini. 2023. Graph Neural Networks
for Temporal Graphs: State of the Art, Open Challenges, and Opportunities.
Transactions on Machine Learning Research (2023).

[23] Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. 2018. dynnode2vec: Scal-
able Dynamic Network Embedding. In 2018 IEEE International Conference on Big

Data (Big Data). IEEE. https://doi.org/10.1109/bigdata.2018.8621910
[24] Rossana Mastrandrea, Julie Fournet, and Alain Barrat. 2015. Contact Patterns in

a High School: A Comparison between Data Collected Using Wearable Sensors,
Contact Diaries and Friendship Surveys. PLOS ONE 10, 9 (Sept. 2015), e0136497.
https://doi.org/10.1371/journal.pone.0136497

[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. arXiv:1301.3781 [cs.CL]

[26] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and Leman Go
Neural: Higher-Order Graph Neural Networks. In Thirty-Third AAAI Conference
on Artificial Intelligence and Thirty-First Innovative Applications of Artificial In-
telligence Conference and Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence (Honolulu, Hawaii, USA) (AAAI’19/IAAI’19/EAAI’19). AAAI
Press, Article 565, 8 pages. https://doi.org/10.1609/aaai.v33i01.33014602

[27] Galileo Mark Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. 2012.
Query-driven active surveying for collective classification. In 10th International
Workshop on Mining and Learning with Graphs, Vol. 8. MLG.

[28] Mark Newman. 2018. Networks (2 ed.). Oxford University Press.
[29] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,

Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2019.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs.
arXiv:1902.10191 [cs.LG]

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[31] Tiago P. Peixoto. 2019. Bayesian Stochastic Blockmodeling. , 289-332 pages.
https://doi.org/10.1002/9781119483298.ch11

[32] Maria Giulia Preti, Thomas AW Bolton, and Dimitri Van De Ville. 2017. The
dynamic functional connectome: State-of-the-art and perspectives. NeuroImage
160 (Oct. 2017), 41–54. https://doi.org/10.1016/j.neuroimage.2016.12.061

[33] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, andMichael Bronstein. 2020. Temporal GraphNetworks for Deep Learning
on Dynamic Graphs. arXiv:2006.10637 [cs.LG]

[34] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.
DySAT. In 13th International Conference on Web Search and Data Mining. ACM.
https://doi.org/10.1145/3336191.3371845

[35] Uriel Singer, Ido Guy, and Kira Radinsky. 2019. Node embedding over temporal
graphs. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence (Macao, China) (IJCAI’19). AAAI Press, 4605–4612.

[36] V. A. Traag, L. Waltman, and N. J. van Eck. 2019. From Louvain to Leiden:
guaranteeing well-connected community. Scientific Reports 9, 1 (26 3 2019), 5233.
https://doi.org/10.1038/s41598-019-41695-z

[37] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. 2024.
Graph Clustering with Graph Neural Networks. J. Mach. Learn. Res. 24, 1, Article
127 (mar 2024), 21 pages.

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks.
arXiv:1710.10903 [stat.ML]

[39] Nguyen Xuan Vinh, Julien Epps, and James Bailey. 2009. Information theoretic
measures for clusterings comparison: is a correction for chance necessary?. In
Proceedings of the 26th Annual International Conference on Machine Learning
(ICML ’09). ACM. https://doi.org/10.1145/1553374.1553511

[40] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi
Zhang. 2019. Attributed Graph Clustering: A Deep Attentional Embedding
Approach. In Twenty-Eighth International Joint Conference on Artificial Intelligence.
International Joint Conferences on Artificial Intelligence Organization. https:
//doi.org/10.24963/ijcai.2019/509

[41] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4–24. https:
//doi.org/10.1109/TNNLS.2020.2978386

[42] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan
Achan. 2020. Inductive Representation Learning on Temporal Graphs.
arXiv:2002.07962 [cs.LG]

[43] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks? arXiv:1810.00826 [cs.LG]

[44] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting
semi-supervised learning with graph embeddings. In Proceedings of the 33rd
International Conference on International Conference onMachine Learning - Volume
48 (New York, NY, USA) (ICML’16). JMLR.org, 40–48.

[45] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.
Embedding Temporal Network via Neighborhood Formation. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD ’18). ACM. https://doi.org/10.1145/3219819.3220054

https://arxiv.org/abs/2105.14491
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.5281/zenodo.13932076
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1049/cp:19991218
https://doi.org/10.1103/physrevx.6.031005
https://doi.org/10.1103/physrevx.6.031005
https://doi.org/10.1109/TNNLS.2022.3190922
https://doi.org/10.1109/TNNLS.2022.3190922
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.18653/v1/2022.dlg4nlp-1.3
https://doi.org/10.18653/v1/2022.dlg4nlp-1.3
https://arxiv.org/abs/1908.09710
https://doi.org/10.3386/w8498
https://doi.org/10.3386/w8498
https://doi.org/10.1111/j.2517-6161.1971.tb01530.x
https://arxiv.org/abs/1609.02907
https://doi.org/10.1073/pnas.1312486110
https://arxiv.org/abs/2306.04962
https://arxiv.org/abs/2306.04962
https://doi.org/10.1109/bigdata.2018.8621910
https://doi.org/10.1371/journal.pone.0136497
https://arxiv.org/abs/1301.3781
https://doi.org/10.1609/aaai.v33i01.33014602
https://arxiv.org/abs/1902.10191
https://doi.org/10.1002/9781119483298.ch11
https://doi.org/10.1016/j.neuroimage.2016.12.061
https://arxiv.org/abs/2006.10637
https://doi.org/10.1145/3336191.3371845
https://doi.org/10.1038/s41598-019-41695-z
https://arxiv.org/abs/1710.10903
https://doi.org/10.1145/1553374.1553511
https://doi.org/10.24963/ijcai.2019/509
https://doi.org/10.24963/ijcai.2019/509
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/2002.07962
https://arxiv.org/abs/1810.00826
https://doi.org/10.1145/3219819.3220054

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Research Question
	3.2 Models
	3.3 Datasets
	3.4 Evaluation Metrics

	4 Experimental Results
	5 Conclusion
	Acknowledgments
	References

